
8/30/2023

Version 5.0.63

PEARDROP

DESIGN

SYSTEMS
GLADE REFERENCE MANUAL

August 30,
2023

GLADE REFERENCE MANUAL

1

1 Table of Contents
1.1 INTRODUCTION ... 13

1.2 GETTING STARTED ... 14

1.2.1 COMMAND LINE OPTIONS ... 14

1.2.2 ENVIRONMENT VARIABLES .. 15

1.2.3 STYLE SHEET ... 16

1.2.4 SETTINGS FILE ... 16

1.2.5 STARTUP SCRIPT FILE .. 16

1.2.6 THE MAIN WINDOW .. 16

1.2.7 THE LSW, LAYERS AND PURPOSES .. 18

1.2.8 CREATING AND USING TECHNOLOGY FILES .. 21

1.2.9 SELECTION ... 26

1.2.10 LIBRARIES, CELLS, VIEWS AND CELLVIEWS ... 26

1.2.11 PCELLS .. 27

1.2.12 PYTHON .. 27

1.2.13 ERROR REPORTING .. 27

2 MENUS .. 29

2.1 THE FILE MENU .. 29

2.1.1 FILE->NEW LIB ... 29

2.1.2 FILE->OPEN LIB .. 29

2.1.3 FILE->SAVE LIB ... 30

2.1.4 FILE->SAVE LIB AS... ... 30

2.1.5 FILE->CLOSE LIB ... 31

2.1.6 FILE->NEW CELL ... 31

2.1.7 FILE->OPEN CELL... ... 31

2.1.8 FILE->SAVE CELL ... 31

2.1.9 FILE->SAVE CELL AS….. 32

2.1.10 FILE->RESTORE CELL .. 32

2.1.11 FILE->IMPORT->CADENCE TECHFILE .. 32

2.1.12 FILE->IMPORT->LAKER TECHFILE ... 33

2.1.13 FILE->IMPORT->TECHFILE .. 33

2.1.14 FILE->IMPORT->GDS2 .. 34

2.1.15 FILE->IMPORT->OASIS ... 37

2.1.16 FILE->IMPORT->LEF.. 40

2.1.17 FILE->IMPORT->DEF ... 41

2.1.18 FILE->IMPORT->VERILOG ... 43

2.1.19 FILE->IMPORT->ECO .. 43

2.1.20 FILE->IMPORT->DXF ... 44

2.1.21 FILE->IMPORT->EDIF .. 44

2.1.22 FILE->EXPORT->TECHFILE .. 45

2.1.23 FILE->EXPORT->GDS2 .. 46

2.1.24 FILE->EXPORT->OASIS.. 48

2.1.25 FILE->EXPORT->LEF .. 50

August 30,
2023

GLADE REFERENCE MANUAL

2

2.1.26 FILE->EXPORT->DEF ... 52

2.1.27 FILE->EXPORT->VERILOG ... 53

2.1.28 FILE->EXPORT->DXF ... 54

2.1.29 FILE->EXPORT->CDL ... 54

2.1.30 FILE->EXPORT->EDIF… ... 57

2.1.31 FILE->PRINT... .. 57

2.1.32 FILE->EXPORT GRAPHICS... ... 57

2.1.33 FILE->RUN SCRIPT... .. 57

2.1.34 FILE->EDIT ASCII FILE... .. 58

2.1.35 FILE->EXIT ... 58

2.2 THE TOOLS MENU ... 60

2.2.1 TOOLS->LSW ... 60

2.2.2 TOOLS->MESSAGE WINDOW .. 64

2.2.3 TOOLS->LIBRARY BROWSER .. 64

2.2.4 TOOLS->HIERARCHY BROWSER ... 66

2.2.5 TOOLS->NET BROWSER ... 67

2.2.6 TOOLS->ADD MARKER .. 68

2.2.7 TOOLS->CLEAR MARKERS ... 68

2.2.8 TOOLS->NETLIST VIEW .. 68

2.3 THE WINDOW MENU ... 73

2.3.1 WINDOW->TAB STYLE ... 73

2.3.2 WINDOW->MDI STYLE .. 73

2.3.3 WINDOW->CLOSE... 73

2.3.4 WINDOW->CLOSE ALL ... 73

2.3.5 WINDOW->TILE.. 73

2.3.6 WINDOW->CASCADE... 73

2.3.7 WINDOW->NEXT .. 73

2.3.8 WINDOW->PREVIOUS ... 73

2.4 THE HELP MENU ... 73

2.4.1 HELP->CONTENTS… .. 73

2.4.2 HELP->INDEX…... 73

2.4.3 HELP->ABOUT .. 73

2.5 LAYOUT MENUS .. 73

2.5.1 VIEW MENU .. 74

2.5.2 VIEW->FIT ... 74

2.5.3 VIEW->FIT+ ... 74

2.5.4 VIEW->ZOOM IN .. 74

2.5.5 VIEW->ZOOM OUT ... 74

2.5.6 VIEW->ZOOM SELECTED .. 74

2.5.7 VIEW->PAN ... 74

2.5.8 VIEW->PAN TO POINT ... 74

2.5.9 VIEW->REDRAW ... 74

2.5.10 VIEW->RULER .. 74

2.5.11 VIEW->DELETE RULERS .. 75

2.5.12 VIEW->VIEW LEVEL 0 .. 75

August 30,
2023

GLADE REFERENCE MANUAL

3

2.5.13 VIEW->VIEW LEVEL 99 .. 75

2.5.14 VIEW->PREVIOUS VIEW ... 75

2.5.15 VIEW->CANCEL REDRAW ... 75

2.5.16 VIEW->DISPLAY OPTIONS ... 75

2.5.17 VIEW->SELECTION OPTIONS ... 80

2.5.18 VIEW->PAN/ZOOM OPTIONS... .. 82

2.5.19 EDIT MENU .. 82

2.5.20 EDIT->UNDO .. 83

2.5.21 EDIT->REDO... 83

2.5.22 EDIT->YANK ... 83

2.5.23 EDIT->PASTE .. 83

2.5.24 EDIT->DELETE .. 83

2.5.25 EDIT->COPY ... 84

2.5.26 EDIT->MOVE ... 84

2.5.27 EDIT->MOVE BY... .. 85

2.5.28 EDIT->STRETCH .. 85

2.5.29 EDIT->RESHAPE .. 86

2.5.30 EDIT->ROUND CORNERS .. 86

2.5.31 EDIT->ADD VERTEX ... 87

2.5.32 EDIT->ROTATE ... 87

2.5.33 EDIT->MOVE ORIGIN .. 88

2.5.34 EDIT->CONVERT TO POLYGON... 88

2.5.35 EDIT->BOOLEAN OPERATIONS... ... 88

2.5.36 EDIT->TILED BOOLEAN OPERATIONS... ... 89

2.5.37 EDIT->MERGE SELECTED .. 90

2.5.38 EDIT->CHOP .. 90

2.5.39 EDIT->ALIGN .. 90

2.5.40 EDIT-> SCALE ... 92

2.5.41 EDIT->BIAS .. 93

2.5.42 EDIT->SET NET ... 93

2.5.43 EDIT->CREATE PINS FROM LABELS ... 94

2.5.44 EDIT->HIERARCHY->ASCEND .. 94

2.5.45 EDIT->HIERARCHY->DESCEND ... 94

2.5.46 EDIT->HIERARCHY->CREATE ... 94

2.5.47 EDIT->HIERARCHY->FLATTEN .. 95

2.5.48 EDIT->GROUP->ADD TO GROUP ... 95

2.5.49 EDIT->GROUP->REMOVE FROM GROUP ... 95

2.5.50 EDIT->GROUP->UNGROUP ... 95

2.5.51 EDIT->EDIT IN PLACE->EDIT IN PLACE ... 96

2.5.52 EDIT->EDIT IN PLACE->RETURN ... 96

2.5.53 EDIT->SELECT->INST BY NAME .. 96

2.5.54 EDIT->SELECT->NET BY NAME .. 96

2.5.55 EDIT->SELECT->SELECT ALL .. 96

2.5.56 EDIT->SELECT->DESELECT ALL .. 96

2.5.57 EDIT->FIND/REPLACE .. 96

August 30,
2023

GLADE REFERENCE MANUAL

4

2.5.58 EDIT->PROPERTIES->QUERY OBJECT .. 98

2.5.59 EDIT->PROPERTIES->QUERY CELLVIEW .. 99

2.5.60 EDIT->BINDKEYS ... 100

2.5.61 CREATE MENU.. 100

2.5.62 CREATE->INST... ... 101

2.5.63 CREATE->RECTANGLE .. 102

2.5.64 CREATE->POLYGON ... 102

2.5.65 CREATE->PATH... .. 103

2.5.66 CREATE->LABEL... ... 104

2.5.67 CREATE->MULTPARTPATH... .. 104

2.5.68 CREATE->PIN... .. 105

2.5.69 CREATE->VIA... .. 106

2.5.70 CREATE->CIRCLE... .. 106

2.5.71 CREATE->ELLIPSE... ... 107

2.5.72 CREATE->ARC... ... 107

2.5.73 CREATE->GROUP... ... 107

2.5.74 VERIFY MENU... 108

2.5.75 VERIFY->CHECK... ... 108

2.5.76 VERIFY->CHECK OFFGRID... .. 108

2.5.77 VERIFY->DRC->RUN... .. 109

2.5.78 VERIFY->DRC->VIEW ERRORS... ... 109

2.5.79 VERIFY->DRC->CLEAR ERRORS ... 110

2.5.80 VERIFY->EXTRACT->RUN... .. 110

2.5.81 VERIFY->LVS->RUN... ... 110

2.5.82 VERIFY->IMPORT HERCULES ERRORS .. 114

2.5.83 VERIFY->IMPORT CALIBRE ERRORS... 114

2.5.84 VERIFY->COMPARE CELLS... 114

2.5.85 VERIFY->TRACE NET .. 115

2.5.86 VERIFY->SET LAYER STACK.. 117

2.5.87 VERIFY->SHORT TRACER... ... 117

2.6 SCHEMATIC MENUS ... 118

2.6.1 VIEW .. 118

2.6.2 VIEW->FIT ... 118

2.6.3 VIEW->FIT+ ... 118

2.6.4 VIEW->ZOOM IN .. 118

2.6.5 VIEW->ZOOM OUT ... 118

2.6.6 VIEW->ZOOM SELECTED .. 118

2.6.7 VIEW->PAN ... 118

2.6.8 VIEW->REDRAW ... 118

2.6.9 VIEW->RULER .. 118

2.6.10 VIEW->DELETE RULERS .. 118

2.6.11 VIEW->CANCEL REDRAW ... 118

2.6.12 VIEW->DISPLAY OPTIONS ... 118

2.6.13 VIEW->SELECTION OPTIONS ... 122

2.6.14 VIEW->PAN/ZOOM OPTIONS... .. 122

August 30,
2023

GLADE REFERENCE MANUAL

5

2.6.15 EDIT .. 122

2.6.16 EDIT->UNDO .. 122

2.6.17 EDIT->REDO... 122

2.6.18 EDIT->YANK ... 122

2.6.19 EDIT->PASTE .. 122

2.6.20 EDIT->DELETE .. 122

2.6.21 EDIT->COPY ... 122

2.6.22 EDIT->MOVE ... 122

2.6.23 EDIT->MOVE BY... .. 122

2.6.24 EDIT->MOVE ORIGIN .. 122

2.6.25 EDIT->STRETCH .. 122

2.6.26 EDIT->ROTATE ... 122

2.6.27 EDIT->SET NET ... 123

2.6.28 EDIT->HIERARCHY->ASCEND .. 123

2.6.29 EDIT->HIERARCHY->DESCEND ... 123

2.6.30 EDIT->SELECT->INST BY NAME .. 124

2.6.31 EDIT->SELECT->NET BY NAME .. 124

2.6.32 EDIT->SELECT->SELECT ALL .. 124

2.6.33 EDIT->SELECT->DESELECT ALL .. 124

2.6.34 EDIT->PROPERTIES->QUERY OBJECT .. 124

2.6.35 EDIT->PROPERTIES->QUERY CELLVIEW .. 126

2.6.36 EDIT->SEARCH… ... 126

2.6.37 EDIT->BINDKEYS ... 127

2.6.38 CREATE ... 127

2.6.39 CREATE->INSTANCE… .. 127

2.6.40 CREATE->WIRE… .. 128

2.6.41 CREATE->SOLDER DOT ... 129

2.6.42 CREATE->LABEL… ... 129

2.6.43 CREATE->PIN…... 129

2.6.44 CREATE->SYMBOL ... 130

2.6.45 CHECK ... 131

2.6.46 CHECK->CHECK CELLVIEW .. 131

2.6.47 CHECK->VIEW ERRORS… .. 132

2.6.48 CHECK->CLEAR ERRORS ... 132

2.6.49 CHECK->CHECK OPTIONS… .. 132

2.6.50 LAYOUT ... 133

2.6.51 LAYOUT->MAP DEVICES... 133

2.6.52 LAYOUT->GEN LAYOUT .. 133

2.6.53 LAYOUT->CREATE GROUP .. 135

2.6.54 LAYOUT->ADD TO GROUP .. 135

2.6.55 LAYOUT->RENAME GROUP ... 135

2.6.56 LAYOUT->REMOVE FROM GROUP ... 136

2.6.57 LAYOUT->DELETE GROUP ... 136

2.6.58 LAYOUT->EDIT GROUP .. 136

2.6.59 LAYOUT->LINK TO LAYOUT ... 138

August 30,
2023

GLADE REFERENCE MANUAL

6

2.6.60 LAYOUT->CLEAR HILITE .. 138

2.7 SYMBOL MENUS ... 138

2.7.1 VIEW .. 138

2.7.2 VIEW->FIT ... 138

2.7.3 VIEW->FIT+ ... 138

2.7.4 VIEW->ZOOM IN .. 138

2.7.5 VIEW->ZOOM OUT ... 138

2.7.6 VIEW->ZOOM SELECTED .. 138

2.7.7 VIEW->PAN ... 139

2.7.8 VIEW->REDRAW ... 139

2.7.9 VIEW->RULER .. 139

2.7.10 VIEW->DELETE RULERS .. 139

2.7.11 VIEW->CANCEL REDRAW ... 139

2.7.12 VIEW->DISPLAY OPTIONS… .. 139

2.7.13 VIEW->SELECTION OPTIONS… .. 139

2.7.14 VIEW->PAN/ZOOM OPTIONS… ... 139

2.7.15 EDIT .. 139

2.7.16 EDIT->UNDO .. 139

2.7.17 EDIT->REDO... 139

2.7.18 EDIT->YANK ... 139

2.7.19 EDIT->PASTE .. 139

2.7.20 EDIT->DELETE .. 139

2.7.21 EDIT->COPY ... 139

2.7.22 EDIT->MOVE ... 139

2.7.23 EDIT->MOVE BY… .. 139

2.7.24 EDIT->MOVE ORIGIN .. 140

2.7.25 EDIT->STRETCH .. 140

2.7.26 EDIT->ROTATE… ... 140

2.7.27 EDIT->SET NET… .. 140

2.7.28 EDIT->SELECT->SELECT ALL .. 140

2.7.29 EDIT->SELECT->DESELECT ALL .. 140

2.7.30 EDIT->PROPERTIES->QUERY ... 140

2.7.31 EDIT->PROPERTIES->QUERY CELLVIEW .. 140

2.7.32 EDIT->SEARCH… ... 140

2.7.33 EDIT->EDIT BINDKEYS… ... 140

2.7.34 CREATE ... 140

2.7.35 CREATE->CREATE LINE… .. 140

2.7.36 CREATE->CREATE RECTANGLE ... 141

2.7.37 CREATE->CREATE POLYGON… ... 141

2.7.38 CREATE->CREATE CIRCLE… ... 141

2.7.39 CREATE->CREATE ELLIPSE… .. 141

2.7.40 CREATE->CREATE ARC… .. 142

2.7.41 CREATE->CREATE->LABEL… ... 142

2.7.42 CREATE->CREATE PIN… ... 143

2.7.43 CHECK ... 143

August 30,
2023

GLADE REFERENCE MANUAL

7

2.7.44 CHECK->CHECK .. 143

2.8 FLOORPLAN MENUS ... 143

2.8.1 VIEW .. 143

2.8.2 EDIT .. 143

2.8.3 CREATE ... 144

2.8.4 VERIFY .. 144

2.8.5 FLOORPLAN .. 144

2.8.6 FLOORPLAN->INITIALISE FLOORPLAN .. 144

2.8.7 FLOORPLAN->CREATE ROWS... ... 144

2.8.8 FLOORPLAN->CREATE GROUPS... .. 145

2.8.9 FLOORPLAN->CREATE REGION... ... 145

2.8.10 FLOORPLAN->PLACEMENT->PLACE .. 145

2.8.11 FLOORPLAN->PLACEMENT->UNPLACE .. 146

2.8.12 FLOORPLAN->GLOBAL ROUTE->GLOBAL ROUTE .. 146

2.8.13 FLOORPLAN->GLOBAL ROUTE->SHOW GLOBAL ROUTED NET .. 147

2.8.14 FLOORPLAN->GLOBAL ROUTE->TOGGLE CONGESTION MAP DISPLAY ... 147

2.8.15 FLOORPLAN->PLACEMENT->CHECK OVERLAPS .. 147

2.8.16 FLOORPLAN->FILLERS->ADD... .. 147

2.8.17 FLOORPLAN->FILLERS->DELETE... .. 148

2.8.18 FLOORPLAN->REPLACE VIEWS... .. 148

2.8.19 FLOORPLAN->HIGHLIGHTNETTYPES... ... 148

3 VERIFICATION .. 149

3.1 LAYER PROCESSING .. 149

3.2 BOOLEAN PROCESSING FUNCTIONS .. 149

3.2.1 GEOMBEGIN(CELLVIEW CV).. 149

3.2.2 GEOMEND() ... 149

3.2.3 OUT_LAYER = GEOMGETSHAPES(‘LAYERNAME’, PURPOSE = ‘DRAWING’, HIER=TRUE) 149

3.2.4 OUT_LAYER = GEOMSTARTPOLY(VERTICES) ... 149

3.2.5 OUT_LAYER = GEOMADDPOLY(LAYER, VERTICES) .. 149

3.2.6 OUT_LAYER = GEOMADDSHAPE(LAYER, SHAPE).. 150

3.2.7 OUT_LAYER = GEOMADDSHAPES(LAYER, SHAPES)... 150

3.2.8 GEOMNUMSHAPES(LAYER) ... 150

3.2.9 GEOMEMPTY() ... 150

3.2.10 GEOMBKGND(SIZE = 0.0) ... 150

3.2.11 GEOMERASE(LAYERNAME, PURPOSE=’DRAWING’).. 150

3.2.12 OUT_LAYER = GEOMMERGE(LAYER) ... 150

3.2.13 OUT_LAYER = GEOMOR(LAYER1, LAYER2) ... 151

3.2.14 OUT_LAYER = GEOMAND(LAYER1, LAYER2) ... 151

3.2.15 OUT_LAYER = GEOMNOT(LAYER) ... 151

3.2.16 OUT_LAYER = GEOMANDNOT(LAYER1, LAYER2) ... 151

3.2.17 OUT_LAYER = GEOMXOR(LAYER1, LAYER2) ... 151

3.2.18 OUT_LAYER = GEOMSIZE(LAYER, SIZE, FLAG = 0) .. 151

3.2.19 OUT_LAYER = GEOMTRAPEZOID(LAYER) .. 151

August 30,
2023

GLADE REFERENCE MANUAL

8

3.3 SELECTION FUNCTIONS .. 151

3.3.1 SELECT_LAYER = GEOMTOUCHING(LAYER1, LAYER2, FLAGS, COUNT=0) ... 151

3.3.2 SELECT_LAYER = GEOMNOTTOUCHING(LAYER1, LAYER2, FLAGS, COUNT=0) ... 152

3.3.3 SELECT_LAYER = GEOMINTERSECTING(LAYER1, LAYER2, FLAGS, COUNT=0) ... 152

3.3.4 SELECT_LAYER = GEOMNOTINTERSECTING(LAYER1, LAYER2, FLAGS, COUNT=0)..................................... 153

3.3.5 SELECT_LAYER = GEOMOVERLAPPING(LAYER1, LAYER2, FLAGS, COUNT) ... 153

3.3.6 SELECT_LAYER = GEOMNOTOVERLAPPING(LAYER1, LAYER2, FLAGS, COUNT=0)..................................... 154

3.3.7 SELECT_LAYER = GEOMINSIDE(LAYER1, LAYER2, FLAGS, COUNT=0) ... 154

3.3.8 SELECT_LAYER = GEOMNOTINSIDE(LAYER1, LAYER2, FLAGS, COUNT=0) ... 155

3.3.9 SELECT_LAYER = GEOMCONTAINS(LAYER1, LAYER2, FLAGS, COUNT=0) .. 155

3.3.10 SELECT_LAYER = GEOMOUTSIDE(LAYER1, LAYER2, FLAGS, COUNT=0) .. 156

3.3.11 SELECT_LAYER = GEOMNOTOUTSIDE(LAYER1, LAYER2, FLAGS, COUNT=0) .. 156

3.3.12 SELECT_LAYER = GEOMAVOIDING(LAYER1, LAYER2, FLAGS, COUNT=0) .. 157

3.3.13 SELECT_LAYER = GEOMBUTTING(LAYER1, LAYER2, FLAGS, COUNT=0) .. 157

3.3.14 SELECT_LAYER = GEOMNOTBUTTING(LAYER1, LAYER2, FLAGS, COUNT=0).. 158

3.3.15 SELECT_LAYER = GEOMCOINCIDENT(LAYER1, LAYER2, FLAGS, COUNT=0) ... 158

3.3.16 SELECT_LAYER = GEOMNOTCOINCIDENT(LAYER1, LAYER2, FLAGS, COUNT=0) 159

3.3.17 SELECT_LAYER = GEOMBUTTORCOIN(LAYER1, LAYER2, FLAGS, COUNT=0) ... 159

3.3.18 SELECT_LAYER = GEOMNOTBUTTORCOIN(LAYER1, LAYER2, FLAGS, COUNT=0) 160

3.3.19 SELECT_LAYER = GEOMINTERACTS(LAYER1, LAYER2, FLAGS, COUNT=0).. 160

3.3.20 SELECT_LAYER = GEOMNOTINTERACTS(LAYER1, LAYER2, FLAGS, COUNT=0) 161

3.3.21 OUT_LAYER = GEOMGETTEXTED(LAYER, LAYERNAME, PURPOSE = ‘DRAWING’, NAME=NONE) 161

3.3.22 OUT_LAYER = GEOMGETNET(LAYER1, ‘NETNAME’) .. 161

3.3.23 OUT_LAYER = GEOMSETTEXT(LAYER1, X, Y, LABELNAME, CREATEPIN=TRUE) 161

3.3.24 OUT_LAYER = GEOMHOLES(LAYER1, FLAGS=GREATERTHAN, COUNT=0) ... 162

3.3.25 OUT_LAYER = GEOMNOHOLES(LAYER1, FLAGS=GREATERTHAN, COUNT=0) .. 162

3.3.26 OUT_LAYER = GEOMGETHOLES(LAYER1, FLAGS=GREATERTHAN, COUNT=0) 162

3.3.27 OUT_LAYER = GEOMGETHOLED(LAYER1, FLAGS=GREATERTHAN, COUNT=0) 162

3.3.28 OUT_LAYER = GEOMGETNON90(LAYER1) ... 162

3.3.29 OUT_LAYER = GEOMGETNON45(LAYER1) ... 162

3.3.30 OUT_LAYER = GEOMGETRECTANGLES(LAYER1) .. 163

3.3.31 OUT_LAYER = GEOMGETPOLYGONS(LAYER1) ... 163

3.3.32 OUT_LAYER = GEOMGETVERTICES(LAYER1, NUM, FLAGS = EQUAL) ... 163

3.4 DRC .. 163

3.4.1 FLAGS ... 163

3.4.2 OUT_LAYER = GEOMWIDTH(LAYER1, RULE, MESSAGE=NONE) .. 164

3.4.3 OUT_LAYER = GEOMWIDTH(LAYER1, RULE, FLAGS, MESSAGE=NONE) .. 164

3.4.4 OUT_LAYER = GEOMALLOWEDWIDTHS(LAYER1, RULES, FLAGS, MESSAGE= NONE) 165

3.4.5 OUT_LAYER = GEOMLENGTH(LAYER1, RULE, FLAGS, MESSAGE=NONE)... 165

3.4.6 OUT_LAYER = GEOMEDGELENGTH(LAYER1, LAYER2, RULE, FLAGS, MESSAGE=NONE) 166

3.4.7 OUT_LAYER = GEOMSPACE(LAYER1, RULE, MESSAGE= NONE) .. 166

3.4.8 OUT_LAYER = GEOMSPACE(LAYER1, RULE, FLAGS, MESSAGE= NONE) .. 166

3.4.9 OUT_LAYER = GEOMSPACE(LAYER1, RULE, WIDTH, LENGTH, FLAGS, MESSAGE= NONE) 167

3.4.10 OUT_LAYER = GEOMSPACE2(LAYER1, RULE, WIDTH, LENGTH, FLAGS=0, MESSAGE = NONE) 168

3.4.11 OUT_LAYER = GEOMSPACE(LAYER1, LAYER2, RULE, MESSAGE= NONE) .. 169

August 30,
2023

GLADE REFERENCE MANUAL

9

3.4.12 OUT_LAYER = GEOMSPACE(LAYER1, LAYER2, RULE, FLAGS, MESSAGE= NONE) 169

3.4.13 OUT_LAYER = GEOMSPACE(LAYER1, RULE, LENGTH, FLAGS=0, MESSAGE = NONE) 169

3.4.14 OUT_LAYER = GEOMALLOWEDSPACES(LAYER1, RULES, FLAGS, MESSAGE= NONE) 170

3.4.15 OUT_LAYER = GEOM2DSPACE(LAYER1, RULES, FLAGS, MESSAGE= NONE) .. 170

3.4.16 OUT_LAYER = GEOMNEIGHBOURS(LAYER1, DIST, RULE, NUM = 2, MESSAGE= NONE 171

3.4.17 OUT_LAYER = GEOMNOTCH(LAYER1, RULE, MESSAGE= NONE) ... 171

3.4.18 OUT_LAYER = GEOMNOTCH(LAYER1, RULE, FLAGS, MESSAGE= NONE) ... 171

3.4.19 OUT_LAYER = GEOMLINEEND(LAYER1, RULE, NUM_ENDS, MIN_ADJ_EDGE_LENGTH=0.0, FLAGS=0,

MESSAGE= NONE) ... 172

3.4.20 OUT_LAYER = GEOMLINEEND(LAYER1, LAYER2, RULE, NUM_ENDS, MIN_ADJ_EDGE_LENGTH=0.0, FLAGS =

0, MESSAGE= NONE) ... 173

3.4.21 OUT_LAYER = GEOMPITCH(LAYER1, RULE, FLAGS = 0, MESSAGE= NONE) ... 173

3.4.22 OUT_LAYER = GEOMOVERLAP(LAYER1, LAYER2, RULE, MESSAGE= NONE) .. 174

3.4.23 OUT_LAYER = GEOMOVERLAP(LAYER1, LAYER2, RULE, FLAGS, MESSAGE= NONE) 174

3.4.24 OUT_LAYER = GEOMENCLOSE(LAYER1, LAYER2, RULE, MESSAGE= NONE)... 174

3.4.25 OUT_LAYER = GEOMENCLOSE(LAYER1, LAYER2, RULE, FLAGS, MESSAGE= NONE) 174

3.4.26 OUT_LAYER = GEOMENCLOSE2(LAYER1, LAYER2, RULE1, RULE2, RULE3, EDGES, MESSAGE= NONE) 175

3.4.27 OUT_LAYER = GEOMALLOWEDENCS(LAYER1, LAYER2, RULES, MESSAGE= NONE) 175

3.4.28 OUT_LAYER = GEOMEXTENSION(LAYER1, LAYER2, RULE, MESSAGE= NONE) 175

3.4.29 OUT_LAYER = GEOMEXTENSION(LAYER1, LAYER2, RULE, FLAGS, MESSAGE= NONE) 175

3.4.30 OUT_LAYER = GEOMAREA(LAYER1, MINRULE, MAXRULE=9E99, MESSAGE= NONE) 176

3.4.31 OUT_LAYER = GEOMAREA(LAYER1, MINRULE, FLAGS=0, MESSAGE= NONE) .. 176

3.4.32 OUT_LAYER = GEOMAREAIN(LAYER1, MINRULE, MAXRULE=9E99, MESSAGE= NONE) 176

3.4.33 OUT_LAYER = GEOMAREAIN(LAYER1, MINRULE, FLAGS=0, MESSAGE= NONE) 177

3.4.34 AREA = GEOMMINDENSITY(LAYER1, RULE, MESSAGE= NONE) .. 177

3.4.35 AREA = GEOMMAXDENSITY(LAYER1, RULE, MESSAGE= NONE) ... 177

3.4.36 GEOMDENSITY(LAYER1, WINDOW_X, WINDOW_Y, STEP_X, STEP_Y, RULE, FLAGS, MESSAGE= NONE) 177

3.4.37 OUT_LAYER = GEOMMARGIN(LAYER1, RULE, MESSAGE= NONE) ... 178

3.4.38 OUT_LAYER = GEOMOFFGRID(LAYER1, GRID, MARKER_SIZE=0.1, MESSAGE= NONE) 178

3.4.39 OUT_LAYER = GEOMADJLENGTH(LAYER1, RULE, LENGTH, FLAGS, MESSAGE= NONE) 178

3.4.40 OUT_LAYER = GEOMALLOWEDSIZE(LAYER1, RULE, MESSAGE= NONE) ... 179

3.4.41 NUM = GEOMGETCOUNT() ... 179

3.4.42 NUM = GEOMGETTOTALCOUNT() .. 179

3.5 EXTRACTION .. 179

3.5.1 SETEXTVIEWNAME(NAME) ... 181

3.5.2 GEOMCONNECT([[VIALAYER, BOTTOMLAYER, TOPLAYER], [...]]) .. 181

3.5.3 GEOMLABEL(LAYER, LABELLAYER, LABELPURPOSE = "DRAWING", CREATEPIN= TRUE) 182

3.5.4 GEOMSETTEXT(LAYER, XCOORD, YCOORD, LABELNAME, CREATEPIN = TRUE) .. 182

3.5.5 SAVEDERIVED(LAYER, WHY, OUTLAYER = TECH_DRCMARKER_LAYER) ... 182

3.5.6 SAVEDERIVED(LAYER, LAYERNAME, PURPOSE, VIEWTYPE="EXT_VIEW") ... 182

3.5.7 SAVEINTERCONNECT([LAYER1, LAYER2, ...]) ... 182

3.5.8 EXTRACTMOS(MODELNAME, RECLAYER, GATELAYER, DIFFLAYER, BULKLAYER=NONE, ISOLAYER=NONE) .. 183

3.5.9 EXTRACTMOSDEVICE(MODELNAME, RECLAYER, [[GATELAYER, TERMNAME],[S/DLAYER,

TERMNAME,TERMNAME],[BULKLAYER, BULKTERMNAME] [ISOLAYER, ISOTERMNAME]]) 183

3.5.10 EXTRACTRES(MODELNAME, RECLAYER, TERMLAYER, BULKLAYER=NONE) ... 184

August 30,
2023

GLADE REFERENCE MANUAL

10

3.5.11 EXTRACTRESDEVICE(MODELNAME, RECLAYER, [[TERMLAYER, TERMNAME, TERMNAME],[BULKLAYER,

TERMNAME]]) .. 184

3.5.12 EXTRACTMOSCAP(MODELNAME, RECLAYER, GATELAYER, DIFFLAYER, BULKLAYER) 184

3.5.13 EXTRACTMOSCAPDEVICE(MODELNAME, RECLAYER, [[GATELAYER, TERMNAME],[S/DLAYER,

TERMNAME],[BULKLAYER,TERMNAME]]) .. 185

3.5.14 EXTRACTDIO(MODELNAME, RECLAYER, ANODELAYER, CATHODELAYER, BULKLAYER=NONE) 185

3.5.15 EXTRACTDIODEVICE(MODELNAME, RECLAYER, [[ANODELAYER, TERMNAME],[CATHODELAYER,TERMNAME],

BULKLAYER,TERMNAME]]) .. 185

3.5.16 EXTRACTBJT(MODELNAME, RECLAYER, EMITLAYER, BASELAYER, COLLLAYER, BULKLAYER=NONE) 185

3.5.17 EXTRACTBJTDEVICE(MODELNAME, RECLAYER, [[EMITLAYER, TERMNAME],[BASELAYER,

TERMNAME],[COLLLAYER, TERMNAME],[BULKLAYER, TERMNAME]]) .. 185

3.5.18 EXTRACTTFT(MODELNAME, RECLAYER, GATELAYER, DIFFLAYER) .. 186

3.5.19 EXTRACTTFTDEVICE(MODELNAME, RECLAYER, [[GATELAYER, TERMNAME],[S/DLAYER, TERMNAME,

TERMNAME]]) .. 186

3.5.20 EXTRACTDEVICE(MODELNAME, RECLAYER, [[TERMLAYER1, TERM1NAME, ...] [TERMLAYER2, TERM2NAME,

...]] 186

3.5.21 EXTRACTPARASITIC(METLAYER, AREACAP, PERIMCAP, ‘GNDNETNAME’) .. 186

3.5.22 EXTRACTPARASITIC2(METLAYER1, MET2LAYER, AREACAP, PERIMCAP) .. 186

3.5.23 EXTRACTPARASITIC3(METLAYER1, MET2LAYER, AREACAP, PERIMCAP, [LAYER1,...LAYERN]) 187

3.5.24 EXTRACTPARASITIC3D(‘SUBSNETNAME’, ‘REFNETNAME’, TOL=0.01, ORDER=-1, DEPTH=-1)............... 187

4 LVS .. 188

5 PCELLS ... 188

5.1.1 PCELL FLOW .. 188

5.1.2 AN EXAMPLE PCELL ... 188

5.1.3 CHANGING PCELL ARGUMENTS FROM WITHIN PCELL CODE .. 190

5.1.4 USING PYTHON PCELLS .. 191

5.1.5 LOADING PCELLS USING PYTHON ... 192

5.1.6 PCELL PYTHON API ... 192

5.1.7 PCELL DEBUGGING .. 193

6 SYMBOL CREATION .. 193

6.1.1 SELECTION BOX .. 193

6.1.2 SYMBOL PROPERTIES ... 193

6.1.3 PINS.. 194

6.1.4 LABELS AND NLP EXPRESSIONS .. 194

7 SCHEMATIC CREATION ... 195

7.1.1 WIRING ... 196

7.1.2 CHECKING .. 196

7.1.3 NETLISTING, SWITCH AND STOP LISTS ... 196

8 SIMULATION .. 196

August 30,
2023

GLADE REFERENCE MANUAL

11

8.1.1 SIMULATOR INSTALLATION .. 196

8.1.2 SCHEMATIC SIMULATION SYMBOL LIBRARY .. 197

8.1.3 PROBING A SCHEMATIC .. 197

8.1.4 SIMULATOR SETUP .. 199

8.1.5 TRANSIENT ANALYSIS ... 200

8.1.6 AC ANALYSIS .. 201

8.1.7 DC ANALYSIS .. 201

8.1.8 PLOTTING .. 202

9 PROGRAMMING IN PYTHON .. 204

9.1 THE COMMAND LINE INTERPRETER ... 205

9.2 WRITING PYTHON SCRIPTS ... 205

9.3 PYTHON API .. 206

 .. 206

9.3.1 ARC CLASS .. 206

 .. 208

9.3.2 ARRAY CLASS .. 208

 .. 214

9.3.3 CELL CLASS ... 214

 .. 215

9.3.4 CELLVIEW CLASS .. 215

 .. 230

9.3.5 DBOBJ CLASS .. 230

 .. 237

9.3.6 DBHIEROBJ CLASS ... 237

 .. 238

9.3.7 DBOBJLIST CLASS .. 238

 .. 241

9.3.8 EDGE CLASS .. 241

 .. 244

9.3.9 ELLIPSE CLASS ... 244

9.3.10 GROUP CLASS.. 247

 .. 250

9.3.11 HSEG CLASS ... 250

 .. 256

9.3.12 INST CLASS ... 256

 .. 262

9.3.13 INSTPIN CLASS.. 262

 .. 264

9.3.14 LABEL CLASS ... 264

August 30,
2023

GLADE REFERENCE MANUAL

12

 .. 269

9.3.15 LIBRARY CLASS .. 269

 .. 278

9.3.16 LINE CLASS ... 278

 .. 282

9.3.17 LPP CLASS... 282

 .. 286

9.3.18 MPP CLASS ... 286

 .. 291

9.3.19 NET CLASS ... 291

 .. 296

9.3.20 PATH CLASS .. 296

 .. 303

9.3.21 PIN CLASS .. 303

 .. 305

9.3.22 POINT CLASS .. 305

 .. 307

9.3.23 POINTLIST CLASS ... 307

 .. 310

9.3.24 POLYGON CLASS .. 310

 .. 313

9.3.25 PROPERTY CLASS ... 313

 .. 313

9.3.26 RECT CLASS ... 313

 .. 317

9.3.27 RECTANGLE CLASS .. 317

 .. 321

9.3.28 SEGMENT CLASS .. 321

9.3.29 DBSEGPARAM CLASS .. 323

 .. 324

9.3.30 SHAPE CLASS ... 324

9.3.31 SIGNAL CLASS.. 325

 .. 326

9.3.32 TECHFILE CLASS ... 326

 .. 336

9.3.33 TRANSFORM CLASS .. 336

 .. 338

9.3.34 UI CLASS .. 338

August 30,
2023

GLADE REFERENCE MANUAL

13

 .. 357

9.3.35 UTILS CLASS .. 357

 .. 359

9.3.36 VIA CLASS ... 359

 .. 363

9.3.37 VIAINST CLASS... 363

 .. 368

9.3.38 VECTOR CLASS .. 368

 .. 370

9.3.39 VERTEX CLASS ... 370

 .. 373

9.3.40 VIEW CLASS .. 373

 .. 374

9.3.41 VSEG CLASS.. 374

1.1 Introduction

Glade is a versatile tool for IC design, enabling schematic capture, netlisting, layout generation and

verification. Unlike many commercial tools, Glade is cross-platform, running on Windows (32 and 64

bit), Linux (32 and 64 bit) and Mac OSX (64 bit), with a database that is platform-independent.

Glade reads and writes common data formats, such as GDS2, OASIS, DXF, LEF/DEF, SPICE/CDL, and

Verilog.

Glade is programmable in Python, and features such as PCells and DRC/LVS use Python scripting for

ease of use.

August 30,
2023

GLADE REFERENCE MANUAL

14

1.2 Getting Started

1.2.1 Command line options

From the command line, Glade can be invoked with a number of command line options:

glade [-ng] [-nobasic] [-redirectStdin] [-library library] [-libName libname [-tech techFile] [[-map

gdsmapfile] -drf displayfile -tf cdstechFile] [-dspf dspffile] [-edif edifFile] [-gds gdsfile] [-gdsout

gdsfile] | [-oasis oasisfile] | [-oasisout oasisfile] | [-dxf dxffile] | [-lef leffile -def deffile]] [-cell

cellname] [-script pythonfile] [-h] [-v]

-ng: run in non-graphics mode. Note that this is only meaningful with the -script option, and any

python script must not call any gui functions e.g getEditCellView(), which will be silently ignored.

-nobasic: Do not load the ‘basic’ library, required for schematics.

-redirectStdin: Redirects the process stdin to the embedded Python interpreter. This allows another

process to send commands to Glade.

-library <name> : the disk directory name to load as a Glade library. It must have been created by a

previous Save Lib command. The library is made current and subsequent import options e.g. –tech, -

gds etc. will import data into this library. If the library does not exist, it will be created.

-libName <name> : the library name to import GDS2 or LEF/DEF into. If not specified, the library

name will be 'default'. The library is made current and subsequent import options e.g. –tech, -gds

etc. will import data into this library. This option is deprecated; use –library instead.

-tech <filename> : An optional Glade technology file to read. Technology files define layer colours,

line and fill patterns and are described in section XXX.

-map <filename> : An optional GDS2 layer map file, used only when the -drf option is specified. It

must be specified before -drf.

-drf <filename> : An optional Cadence display resource file. If specified, -tf must also be specified

subsequently. It should not be used with the –tech option.

-tf <filename> : An optional Cadence technology file (ascii Skill format). If specified, -drf must also be

specified first.

-dspf <filename> : the name of a DSPF file to import. Currently only flat (nets, subnodes, resistors,

capacitors and instances in a top level .SUBCKT are supported).

-edif <filename> : the name of an EDIF file to import. The EDIF file defines the libraries, cells and

views that will be imported.

-gds <filename> : the name of a GDS2 file to import into the current library. Multiple GDS2 files can

be specified.

-gdsout <filename> : the name of a GDS2 file to export from the current library. The program will

exit after the GDS2 file is written.

August 30,
2023

GLADE REFERENCE MANUAL

15

-oasis <filename> : the name of an OASIS file to import into the current library. Multiple OASIS files

can be specified.

-oasisout <filename> : the name of an OASIS file to export from the current library. The program will

exit after the oasis file is written.

-lef <filename> : the name of a LEF file to import into the current library. Multiple LEF files can be

imported, however duplicate definitions of SITEs and MACROs should be avoided as duplicate

definitions will be ignored.

-def <filename> : the name of a DEF file to import into the current library. A cell will be created

according to the DEF DESIGN statement. Multiple DEF files can be specified.

-dxf <filename> : the name of a DXF file to import into the current library. The top level cell will be

called 'top'.

-cdl <filename> : the name of a CDL file to import into the current library. Cells will be created with a

view type of 'netlist' for each subcircuit in the CDL/Spice file.

-cell <name> : the name of a cell to open and display. Note that the viewType is assumed to be

"layout".

-cellview <cellname> <viewname> : the name of a cell and a view to open and display.

-script <filename> : the name of a Python script file to run. The script will be run after all other

commands.

-h: prints usage info

-v: prints the current version

1.2.2 Environment Variables

Glade can make use of several environment variables. These are the documented ones:

• GLADE_HOME – Used by the help browser to locate the html help files.

• GLADE_NO_EXCEPTION_HANDLER – If this environment variable is set, do not use

the exception handler for Qt events. Can sometimes help with debugging info if

errors occur.

• GLADE_NO_CHECK_VERSION – If this environment variable is set, it prevents Glade

from checking if the program version is current, and displaying a warning dialog if

not. It is recommended that you do not set this to get early notification of updates

and bug fixes.

• GLADE_DEBUG_SUBMASTERS – If this environment variable is set, it allows the

display of PCell submasters in the library browser. Normally these are hidden, as

they are not for the user to manipulate.

• GLADE_LOGFILE_DIR – The directory to write the logfile to. If not specified, Glade

will write the logfile to the current working directory, or the home directory.

August 30,
2023

GLADE REFERENCE MANUAL

16

• GLADE_USE_OPENGL – If this environment variable is set, Glade will not use OpenGL

for drawing layout views, even if the user’s system has OpenGL capabilities. Useful if

only software OpenGL implementations are present.

• GLADE_DRC_FILE – the full path to a DRC file used to seed the Run DRC dialog.

• GLADE_EXT_FILE - the full path to an extraction file used to seed the Run LPE dialog.

• GLADE_NETLIST_FILE – the full path to a CDL netlist file for the Run LVS dialog.

• GLADE_DRC_VARS – a string list of DRC variables to preset the Run DRC dialog.

• GLADE_EXT_VARS – a string list of extraction variables to preset the Run LPE dialog.

• GLADE_DRC_WORK_DIR – a working directory for writing geom… temporary files.

• GLADE_THREADED_EXTRACTION – set to number of threads allowed for running

extraction. Default is the maximum number allowed by the CPU(s).

• GLADE_FASTCAP_WORK_DIR – a working directory for writing FastCap mesh files.

• GLADE_NO_DELETE_TMPFILES – if this environment variable is set, do not delete

temporary FastCap mesh files. Useful if you want to view the mesh geometry.

• PYTHONPATH – Glade’s Python interpreter uses this to locate Python modules, e.g.

PCell files.

1.2.3 Style Sheet

Glade will read a stylesheet file named glade.qss if found in the same directory as the executable.

This can be used to e.g. set font size for the whole application, or for specific widgets. A guide to the

file format is given in the Qt documentation.

1.2.4 Settings file

Glade reads a gladerc.xml settings file whenever a design is opened. The settings file contains display

and selection settings, window arrangement and bindkey settings. Glade will attempt to read the

gladerc.xml from the user’s home directory, as defined by the HOME environment variable. It will

also open a local gladerc.xml file in the current working directory, if it exists, and merge this with the

settings from the HOME gladerc.xml, replacing any duplicate entries. This allows project-specific

settings to be applied. On exit, Glade will write to the local gladerc.xml file if it exists, else it will

write to the gladerc.xml file in the users HOME directory.

1.2.5 Startup script file

Glade can read a Python startup file if it exists, and execute the Python commands in it before
processing command line arguments. The startup file must be called .glade.py (note the preceding
dot). Glade will load the startup file from the user’s HOME directory, if the file exists. It will also load
a startup file from the current working directory if the file exists there. The order of loading is the
home directory first, followed by the local directory. A startup file is useful for loading e.g. a
technology file or loading libraries. An example:

mylibs = ["CNM25TechLib", "SPICE3Lib", "XSpiceLib", "ExampleLib"]

nlib = len(mylibs)

libinit = [0 for i in range(nlib)]

for n in range(nlib):

 libinit[n] = library(mylibs[n])

 libinit[n].dbOpenLib("./"+mylibs[n])

1.2.6 The main window

The Glade main window (Figure 1.1) comprises the following components:

http://doc.qt.io/qt-5/stylesheet-syntax.html

August 30,
2023

GLADE REFERENCE MANUAL

17

• Menu Bar

• Toolbars

• Tab or Multiple Window (MDI) area

• Dock Windows

o Message Window

o Library Browser

o LSW (Layer Select Window)

o World View

o Net Browser

o Hierarchy Browser

• Command Line

• Status Bar

Figure 1 - Glade Main Window

The menu bar shows the current menu items. The default menu bar items are the File, Tools,

Window and Help menus. When a cellView is opened, the menu items and toolbars will change

according to the viewType of the cellView.

CellViews are displayed in the central area of the main window. They can be displayed either in tab

windows or multiple subwindows. Tab windows allow easy navigation between designs by clicking

on the tab; multiple windows allow different designs to be shown at the same time and the windows

tiled or cascaded; for example a schematic view and a layout view of the same cell can be displayed

Menu Bar

ToolBar

Dock

Window

WWIndo

w

Tab

Window

Message

Window

Command

Line

Status

Bar

WWIndo

w

August 30,
2023

GLADE REFERENCE MANUAL

18

side by side when in MDI window mode. The Window menu allows for switching between tab and

MDI mode, and for switching between subwindows or tab windows.

Dock Windows are used for the library browser, LSW and other browsers. They can be dragged and

positioned at the sides of the central window, including stacking them to save space. The message

window is normally displayed at the bottom of the central window, with other dock windows on the

left and/or right of the central window.

The Command Line is displayed just below the Message Window and is used to enter textual

commands in Python. The built in Python interpreter in Glade displays the results in the message

window. The Command Line allows normal editing e.g. ctrl+A to move to the beginning of a line,

ctrl+E to move to the end, and the up/down arrow keys to recall the last/next command in the

command history.

Lastly the Status Bar displays info such as details of menu items or toolbars the cursor is hovering

over, plus information about the selected object/net, number of items selected, selection mode,

cursor XY coordinates and delta XY coordinates for e.g. move operations.

1.2.7 The LSW, layers and purposes

Glade draws shapes on layers. A layer is a collection of shapes and represents a masking stage in the
fabrication process of the design. From a user’s point of view, each layer is defined by a layer name
and a purpose name. This allows subdividing layer name space depending on use; for example a
layer called “METAL1” may have purpose names “drawing”, “net”, “pin”, “boundary” etc. The
combination of a layer name and a purpose name is called a Layer Purpose Pair (lpp). Internally,
Layer Purpose Pairs map directly to an index into the technology file layer table.

Layers can be either user-defined or system layers. System layers are used for specific functions, for
example the cursor is drawn on the “cursor” “drawing” lpp. Most system layers can’t be drawn on.

The LSW (Layer Selection Window) is used to control layer display in Glade. It comprises a dockable
dialog box with a scrollable panel of layers - one for each layer defined in the technology file - plus
some system defined layers. Each layer in the LSW has 3 parts: a colour box on the left which
displays the layer line and fill style; a layer box in the centre which displays the layer's name, and
a purpose box on the right which displays the layer's purpose, abbreviated to 3 characters (for
example 'drawing' becomes 'dwg', 'pin' becomes 'pin', 'boundary' becomes 'bdy' and 'net' is
represented as 'net').

The LSW shows user-defined layers and the system layers. System layers include the following:

• group – used to show the outline of groups of shapes.
• Layers y0-y9, used for temporary display purposes
• Layers annotate (purpose drawing, drawing1-9), used for schematic/symbol labels
• mpp - used internally for MPP objects. Do not draw on this layer
• boundary - used for cell boundaries for LEF cells and the DEF design boundary
• region - used to display DEF regions
• row - used to display rows from DEF
• marker - used for flagging DRC errors
• device - used for symbol shapes
• wire - used for schematic wires

August 30,
2023

GLADE REFERENCE MANUAL

19

• pin - used for schematic and symbol pins
• text - used for autogenerated text labels e.g. as a result of importing LEF
• hilite - used for displaying flightlines e.g. for connectivity
• select - used to highlight selected objects
• mingrid - used to draw the minor grid
• majgrid - used to draw the major grid
• axes - used to draw the axes
• cursor - used for the box or crosshair cursor
• viaInst - for via instances that are shown unexpanded
• instance - for instances that are show unexpanded
• backgnd - the background display colour (defaults to black, but can be set to any colour)

Figure 2 - The LSW

At the top of the LSW are four buttons NS (None selectable), NV (None visible), AS (All Selectable),
AV (All visible) which allow all layer selectability/visibility to be set at once. Below this are 4 buttons
M1 (save to memory 1), R1 (recall from memory 1), M2 (save to memory 2) and R2 (recall from

Colour Box

Layer Box

Purpose

Box

August 30,
2023

GLADE REFERENCE MANUAL

20

memory 2). These allow the current layer selectability / visibility to be saved and recalled for
frequent changes. As changes are made that affect the display (changing colour, fill pattern or layer
visibility) the display is automatically updated.

Left mouse clicking on the colour box displays a colour chooser dialog. The layer colour and alpha
value (transparency) can be changed in this dialog.

Figure 3 - Colour Chooser dialog

Right mouse clicking on the colour box displays the stipple chooser dialog. Existing stipple patterns
can be selected from the Stipple combobox, or edited using the grid on the left of the dialog. The
layer outline width and line style can also be set in this dialog.

Figure 4 - Stipple chooser dialog

Left mouse clicking on the layer box selects the layer as the current layer for e.g. Create…
commands.

Right mouse clicking on the layer box toggles the layer visibility. Layers that are invisible have their
colour box hidden.

Middle mouse clicking on the layer box toggles the layer selectivity. Layers that are unselectable
have their layer widgets grayed out.

Double left clicking on the layer box displays a dialog with the layer name. The layer name can be
changed in this dialog.

Double middle mouse clicking on the layer box displays a dialog with the layer purpose name. The
purpose can be changed in this dialog.

August 30,
2023

GLADE REFERENCE MANUAL

21

Double right mouse clicking on the layer box shows the layer properties dialog.

1.2.8 Creating and Using Technology Files

A techfile can be created using a text editor or by importing GDS2 or LEF and then exporting the

techfile created, and subsequently editing the exported file to set colors, fill styles etc. Layer colours,

stipples, linestyles can all be edited directly using the LSW.

1.2.8.1 Layer definitions

The layers section comprises lines beginning with a LAYER keyword and 9 parameters:

// Technology file example

//

// Name Type Number dtype RGB sel? vis? fillstyle linestyle valid? mask

LAYER pwell drawing 1 0 (150,150,217,255) t t empty plain t 0 ;

LAYER nwell drawing 2 0 (170,0,255,255) t t empty plain t 0 ;

LAYER diff drawing 3 0 (0,204,0,255) t t dots2 plain t 0 ;

LAYER od2 drawing 4 0 (217,204,0,255) t t dots2 plain t 0 ;

LAYER poly1 drawing 13 0 (255,0,0,255) t t zagr1 plain t 0 ;

The first parameter is the layer name, the second its purpose. The default purpose for drawing layers

is 'drawing'. When reading LEF/DEF 3 other purposes are required - 'pin' for port shapes, 'boundary'

for obstructions (blockages), and 'net' for routing shapes. The combination of layer name and layer

purpose uniquely defines a layer-purpose pair, thus it is not permitted to use the same layer name

and purpose more than once.

Parameters 3 and 4 are the GDS2 layer number and datatype. These are used in importing and

exporting GDS2 to map a layer-purpose pair to a GDS layer and datatype.

The fifth parameter is the layer color expressed in RGBA (red-green-blue-alpha) terms. Values for R,

G, B and A can range from 0 to 255. Thus (255,0,0) defines bright red and (255,255,0) defines yellow,

etc. The RGBA values should be delimited by commas and surrounded by brackets as shown. No

spaces or tab characters are permitted in a RGBA value.

The alpha channel (A), the fourth component of the RGBA value represents the transparency of the

layer, with 255 being opaque and 0 fully transparent. Alpha blending is supported for both OpenGL

mode and software rasterisation mode.

The sixth and seventh parameters define whether the layer is selectable and/or visible. Permissable

values are 't' for true and 'f' for false.

The eighth and ninth parameters define the fillstyle and linestyle for the layer. These are defined by

name and reference fill and line styles as described below.

August 30,
2023

GLADE REFERENCE MANUAL

22

The tenth parameter defines whether a layer is ‘valid’, i.e. shown in the LSW. The eleventh

parameter defines the mask number for colouring purposes.

Note that technology file lines end in a ';' character. This defines the logical line end and must be

present. Carriage returns and line feeds are ignored and a '//' defines a comment line which is also

ignored.

The order of the layer lines in the techfile controls the drawing order of the layers. To draw a layer

'on top' of another it should follow the other layer.

1.2.8.2 Line Styles

// Line Styles.

//

// Name Width Style

LINE plain 0 SOLID ;

LINE thicksolid 4 SOLID ;

LINE thick 2 SOLID;

LINE dashed2 2 DASH ;

LINE dotted 0 DOT ;

LINE dashdot 0 DASHDOT ;

LINE dashdotdot 0 DASHDOTDOT ;

Line styles start with the LINE keyword followed by 3 parameters: the linestyle name, the line width

and the line style. Line widths should normally be set to 0 for a minimum width line as this gives

slightly better rendering performance than a linewidth of 1 (which otherwise will display the same).

Line styles can be one of the following: SOLID, DASH, DOT, DASHDOT or DASHDOTDOT.

1.2.8.3 Stipple Patterns

//

// Stipple Patterns.

//

// Name Type Fill pattern

STIPPLE patt1 STIPPLE

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

August 30,
2023

GLADE REFERENCE MANUAL

23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

;

STIPPLE empty HOLLOW ;

STIPPLE solid SOLID ;

STIPPLE cross CROSSED ;

Stipple patterns begin with a STIPPLE keyword followed by a stipple name. The second parameter

can be one of HOLLOW, SOLID, CROSSED or STIPPLE, which define the kind of stipple pattern. In the

case of a STIPPLE fill pattern a 16 by 16 bit stipple pattern comprised of 1's and 0's follows which

defines the fill pattern. Stipple patterns can be 8x8, 16x16, 32x32. Other sizes will get 'filled' to the

nearest greater bit width/height.

1.2.8.4 Via Definitions

Vias can be defined by the VIA keyword.

//

// Via rules.

//

VIA P_M1

poly drawing -0.5 -0.5 0.5 0.5

cont drawing -0.2 -0.2 0.2 0.2

metal drawing -0.5 -0.5 0.5 0.5 ;

A via has a name then a list of via layers comprising a layer/purpose pair name and coordinates of

the layer rectangle. The list of via layers should normally be in order from lowest processed layer up,

starting with a routing layer, then a cut layer, then a routing layer. Multiple shapes can be defined

for each layer e.g. cut layer (for multi cut vias).

1.2.8.5 Manufacturing Grid

The technolog manufacturing (snap) grid can be specified:

//
// Manufacturing Grid.
//
MFGGRID 0.250000 ;

1.2.8.6 Width and Spacing rules

Each layer can have a minimum width and minimum space rule that can be used for basic rules

checks. The syntax is as follows:

//

// Spacing rules.

//

// Minimum Width of the layer

August 30,
2023

GLADE REFERENCE MANUAL

24

MINWIDTH poly drawing 0.25 ;

//

// Minimum Spacing of the layer

MINSPACE poly drawing 0.30 ;

//

// Minimum Spacing of the layer to another layer

MINSPACE poly drawing active drawing 0.07 ;

//

// Minimum Enclosure (first layer must enclose second by rule)

MINENC active drawing pimp drawing 0.24 ;

//

// Minimum Extension (first layer must extend beyond second layer by rule)

MINEXT poly drawing active drawing 0.18 ;

//

// Minimum Area of the layer

MINAREA active drawing 0.122 ;

1.2.8.7 Layer Function

Layers can have a FUNCTION defined which indicates their usage. This is mainly for LEF/DEF

applications but also used by the Create Path command to define via layers between routing layers.

Without this information, the change layer up/down feature of Create Path will not work.

//

// Layer Function.

//

FUNCTION metal1 net ROUTING ;

FUNCTION metal1 boundary BLOCKAGE ;

Valid function keywords are CUT, MASTERSLICE, ROUTING, BLOCKAGE, PIN, OVERLAP, WELL,

DIFFUSION, POLY, IMPLANT, NONE

1.2.8.8 Layer Connectivity

The Trace Net command requires layer connectivity information in order to trace connection

through vias etc. The format of this is as follows:

//

// Layer Connections.

//

CONNECT metal1 drawing BY via1 drawing TO metal2 drawing ;

CONNECT metal1 drawing TO metal1a drawing ;

The first form connects two routing layers by a via layer; the second format connects two routing

layers directly.

1.2.8.9 Layer Routing Direction

Specifies the preferred routing direction of routing layers.

//

August 30,
2023

GLADE REFERENCE MANUAL

25

// Layer routing direction.
//
ROUTINGDIR METAL drawing HORIZONTAL ;
ROUTINGDIR METAL2 drawing VERTICAL ;

1.2.8.10 Layer Pitch and Offset

The autorouter uses the layer pitch and offset to generate the routing grid. This can be specified in

the techfile, or in a technology LEF file (in which case it overrides any values in the technology file).

//
// Layer Pitch.
//
PITCH METAL drawing 5.5000 ;
PITCH METAL2 drawing 7.0000 ;
//
// Layer Offset.
//
OFFSET METAL drawing 2.7500 ;
OFFSET METAL2 drawing 3.5000 ;

1.2.8.11 MultiPartPaths

MultiPartPath (MPP) definitions can be defined in the techfile. A MPP is a path that can have

multiple layers, including cut layers, but can be entered and edited just like a normal path.

//

// MultiPartPath rules.

MPP nguard LAYER NTUB drawing WIDTH 14.5 BEGEXT 7.25 ENDEXT 7.25 ;

MPP nguard LAYER GASAD drawing WIDTH 4.5 BEGEXT 2.25 ENDEXT 2.25 ;

MPP nguard LAYER NPLUS drawing WIDTH 9.5 BEGEXT 4.75 ENDEXT 4.75 ;

MPP nguard LAYER WINDOW drawing WIDTH 2.5 BEGEXT -1.25 ENDEXT 1.25 SPACE 3 LENGTH 2.5 ;

MPP nguard LAYER METAL drawing WIDTH 5.0 BEGEXT 2.5 ENDEXT 2.5 ;

Here nguard is the name of the MPP; following the LAYER keyword is the layer and purpose; then a

WIDTH defining the width of the layer. For normal layers, BEGEXT defines the extension of the layer

away from the first vertex, ENDEXT defining the extension of the layer away from the last vertex. For

contact layers with SPACE/LENGTH, BEGEXT is the offset of contacts from the start vertex of the

MPP, ENDEXT is the offset of contacts from the end vertex of the MPP.

// With offset

MPP nguard LAYER METAL drawing WIDTH 5.0 BEGEXT 2.5 ENDEXT 2.5 OFFSET 0.5 ;

MPP nguard LAYER WINDOW drawing WIDTH 2.5 BEGEXT -1.25 ENDEXT 1.25 SPACE 3 LENGTH 2.5

OFFSET -0.75 ;

Optionally if SPACE and LENGTH keywords are present the layer is assumed to be a cut layer and will

have square cuts of size LENGTH spaced SPACE apart.

Optionally the keyword OFFSET can be used after either ENDEXT (for a normal path) or LENGTH (for

a contact path) and defines an offset of that layer's centreline to the MPP centreline. A negative

OFFSET shifts the points of that layer to the inside (the left of a directed segment), a positive OFFSET

August 30,
2023

GLADE REFERENCE MANUAL

26

shifts the points of that layer to the outside (the right of a directed segment). Note the keywords

and values must be in the order given above.

1.2.8.12 Techfile limits

Currently 4096 layer-purpose pairs are supported, of which 24 are system-defined. The maximum

logical line length in the techfile is limited to 32768 characters. There are no limits to the number of

line and fill styles that can be defined.

1.2.9 Selection

Most Glade commands work on the ‘selected set’. The left mouse button (LMB) is used for selection.

• Single Click selects an object.

• Shift+Click adds objects to the selected set

• Ctrl+Click removes objects from the selected set

• LMB drag selects objects within the drag area

• Shift+LMB drag adds objects within the drag area to the selected set

• Ctrl+LMB drag removes objects within the drag area from the selected set

The number of selected items is shown in the status bar. Selected objects are displayed highlited

using the select layer. Unselected objects can be drawn dimmed by using the Selection Options Dim

unselected objects option.

Selection works in two modes: Full and Partial. In Full mode, whole objects are selected. In Partial

mode, edges or vertices of shapes are selected. The selection mode is set using the Selection

Options dialog, or using the F4 key to toggle between modes. Shape selection can be controlled

using the LSW.

Glade has two selection types: Item and Net. You can set the selection type in the Selection Options

dialog, or using the F7 key to toggle between modes. Item mode selects individual shapes, instances

etc. Net mode will select all shapes of a net if any shape selected is part of a net.

1.2.10 Libraries, Cells, Views and CellViews

Glade manages design data in libraries. You can create as many libraries as you need. For example, if

you have a number of GDS2 files, and want to use the design data in each in an overall top level

design, you could import each GDS2 file into a unique library, and then create a library to hold your

top level cell which references cells from each of these libraries. A library is a collection of cells,

where a cell is for example an inverter, a nand gate, a block or a complete top level design. Cells

correspond to GDS2 STRUCT objects, a LEF MACRO, or a DEF DESIGN, for example. A cell can have

different views, a view being a representation of that cell. Views have a viewType attribute which

describes their type. For example a view type of 'maskLayout' is used to represent raw physical

layout data e.g. the result of importing GDS2. A view type of 'abstract' is used for simplified layout

data from importing LEF. A view type of ‘symbol’ is used to represent schematic symbols. A view

type of ‘schematic’ is used for schematic disgrams. The combination of a specific cell and a view for

that cell is called a cellView. Views of the same viewType may have different names e.g. ‘layout’,

‘layout_new’, ‘extracted’.

August 30,
2023

GLADE REFERENCE MANUAL

27

Before you can import design data, you need to create a library to hold that design data. You can use

the New Library command for this, and then attach a technology file to the library using the Import

TechFile command, or more simply just use the Import TechFile command, which allows you to

enter a library name; the library will be created and the technology file attached to the library. As

some people want to just read in a GDS file or LEF/DEF without bothering to load or create a

technology file, the File->Import commands will generally allow you to create a library with a default

technology file.

Glade supports file locking of libraries saved to disk. This is typically used in a multiuser environment,

where several users may be working on a design using shared libraries. If user A opens a cellView in

a library, a lock is created on that cellView so that user B cannot open that cellView (and

inadvertently modify it and save the result while A is still working on the same cellView).

Locks are automatically deleted if the user closes the cellView (saving it if modified) or closes the

library (in which case modified cellViews will be prompted for save/cancel).

When attempting to open a locked cellView, a dialog is displayed which allows a user to ‘steal’ a

locked cellView. This is provided so that if a lock is not deleted (e.g. on a crash) it can be removed.

Note that is a new cellView is created and has not yet been saved to disk, then it is not possible to

lock the cellView – and it makes no sense as other users cannot ‘see’ the new cellView until it is

saved.

1.2.11 PCells

Glade can use python to create parameterised cells, or PCells. A parameterised cell has a Python

script that defines how the cell is created, and takes parameters. For example a MOS device might

take a W and L parameter and have the transistor automatically created with the correct poly,

diffusion and contact layers. Please note that Glade PCells are NOT compatible with Cadence Skill-

based PCells, or Synopsys PyCells. PCells are described in more detail in the section PCells.

1.2.12 Python

The entire Glade database and much of the UI is wrapped in Python using SWIG. This means you can

write Python scripts to automate tasks - PCells (parameterised cells) are a good example. Python is

an object-oriented language widely used for scripting. The Python API is described in more detail in

the section Programming in Python. Python can be written using the File->Edit Ascii File… command

which features syntax highlighting for the Python language.

1.2.13 Error reporting

In the unfortunate event of an internal program error occurring, Glade will trap the error and report

diagnostics which can be mailed to the developers so the bug can be fixed. To get diagnostics

reported, you may set the environment variable GLADE_NO_EXCEPTION_HANDLER to yes.

Otherwise the exception will be attempted to be handled by the default GUI exception handler.

August 30,
2023

GLADE REFERENCE MANUAL

28

Figure 5 - Glade error report

The error report shows the type of error, CPU register contents and a stack trace with the most

recent stack frame first. Clicking on the Mail bug report button will mail the stacktrace to the

developers. For security reasons, if the environment variable GLADE_NO_AUTO_BUG_REPORT is set,

sending stacktraces will be prohibited. Clicking on the Exit button will exit the application. If there is

unsaved data, you will be prompted to save the library.

August 30,
2023

GLADE REFERENCE MANUAL

29

2 Menus

2.1 The File Menu

File Menu commands are used for creating, opening and saving libraries and cellViews. They are also

used for importing and exporting design data and other general functions.

Normally the sequence of importing design data into Glade is performed by importing a library; or

importing a techfile to create a library then the design data e.g. GDS2. If you do not have a

technology file, you can just import GDS2 or LEF/DEF, as basic technology information will be

created for each layer read. In the case of GDS2, layers will be of the form L0, L1... where the

number is the GDS2 layer number, and the layer ordering will be according to the layers as

encountered in the GDS file. All layers created by importing GDS2 will have purpose drawing, and

layer colours will be assigned at random with hollow fill style. Layers created by importing LEF will

have the LEF layer name and 4 purposes (drawing, net, pin and boundary). You can then

subsequently export the technology file for later use.

2.1.1 File->New Lib

The File->New Lib command creates a new library, with name as specified by Library Name.

Figure 6 - New Library

Load techFile enables the Technology File field and will load that techFile into the new library. Attach

to library enables the Attach library name field, and will attach the library's techFile to an existing

(open) library. Database units/micron controls the precision of the represented data. Unless you

have a good reason to change this and understand the implications, leave it as 1000 (i.e. 1 dbu =

1nm).

2.1.2 File->Open Lib

The File->Open Lib command opens an existing library. The Open File dialog is displayed (the actual

look will depend on what OS you are using)

August 30,
2023

GLADE REFERENCE MANUAL

30

Figure 7 - Open Library

If you have an existing Glade library, you can use the Open Library command to specify a library

name to open. Note that Glade libraries are just directories, so select the library by selecting the

directory with the same name and click Select Folder (Windows). Internally cellViews are stored as

files in a library of the form libName/cellName/viewName. The library technology file is also stored

in the library in binary format and is stored as libName/glade.lib.

2.1.3 File->Save Lib

2.1.4 File->Save Lib As...

Figure 8 - Save Lib As...

Use the File->Save Lib or File->Save Lib As... to save a library to disk after importing design data.

Library to save chooses the library you wish to save. Save to directory specifies a directory name in

Linux or folder name in Windows. Click on the file chooser icon to browse to a directory. The library

data is written to files in this directory/folder. These files are binary - do not attempt to alter them,

delete or rename them, or your design data may become corrupted.

August 30,
2023

GLADE REFERENCE MANUAL

31

2.1.5 File->Close Lib

Figure 9 - Close Library

The File->Close Lib command closes the chosen library. All cellViews from the library will be purged

from virtual memory. The system will prompt you to save any modified cellViews. If a window

displaying a cellView from the library is open, it will be closed.

2.1.6 File->New Cell

Figure 10 - New CellView

The File->New Cell command to creates a new cellView. The library given by Library Name must

already exist. Specify the Cell Name and the View Name. Set the View Type to the type of the

cellView; valid options are layout, schematic, symbol, abstract, autoLayout. Setting the View Type

will set a default View Name. If CellView is a PCell is checked, a PCell (parameterised cell) will be read

from the PCell script file. In this case the Cell Name is automatically assigned from the python script

name, and the Cell Name field is greyed out.

The new cellView is added to the library and displayed in the library browser, and automatically

opened if Automatically Open cellView? Is checked.

2.1.7 File->Open Cell...

The File->Open Cell… command displays the library browser, if not already shown, to allow opening

of a cellView. CellViews are opened in the library browser.

2.1.8 File->Save Cell

The File-> Save Cell command saves the current cellView to the library on disk.

August 30,
2023

GLADE REFERENCE MANUAL

32

2.1.9 File->Save Cell As…

The File-> Save Cell As… command prompts for a new cell name, then saves the cellView to the

library on disk. The view name is maintained the same.

Figure 11 - Save Cell As

2.1.10 File->Restore Cell

The File->Restore Cell command restores a cellView from disk. Any current edits will be lost.

2.1.11 File->Import->Cadence TechFile

The File->Import->Cadence TechFile... command displays the Import Cadence TechFile dialog.

Figure 12 - Import Cadence TechFile

Display Resource File specifies the Cadence display resource file (typically display.drf). Technology

File specifies the Cadence technology file. Into Library should specify a library name to import the

technology into, and will be created if it does not already exist. If the library does exist, the imported

techFile will be merged with the existing one. This can produce unpredictable results and is not

advised. Database units/micron sets the internal database resolution; in most cases 1000 is suitable.

If Use GDS map file is set, stream layer/datatype numbers to Cadence layer/purpose names are set

using the specified mapfile. The map file format is simply lines containing layer name, purpose

name, stream layer number and stream datatype number. Comment lines (lines beginning with the #

character) are ignored.

#Layer Name Purpose Name Stream# datatype

od drawing 6 0

Note there are some limitations on importing Cadence techFiles. Stipple patterns of size 4x4, 8x8,

16x16 and 32x32 are supported, other stipple pattern sizes will be rounded up to the next supported

size. The Cadence techFile should be written from Virtuoso and should not be hand edited else it

August 30,
2023

GLADE REFERENCE MANUAL

33

may not parse successfully – Skill expressions are not parsed. The parser also attempts to read

mfgGridResolution, layerFunctions, orderedSpacingRules, standardViaDefs and

multipartPathTemplates/lxMPPTemplates.

2.1.12 File->Import->Laker TechFile

The File->Import->Laker TechFile... command displays the Import Laker TechFile dialog.

Figure 13 - Import Laker TechFile

Display File specifies the Laker display file (typically default.dsp). Technology File specifies the Laker

technology file. Into Library should specify a library name to import the technology into, and will be

created if it does not already exist. If the library does exist, the imported techFile will be merged

with the existing one. This can produce unpredictable results and is not advised. Database

units/micron sets the database units. Use GDS map file, if checked, allows a GDS layermap file to be

used. The map file format is simply lines containing layer name, purpose name, stream layer number

and stream datatype number. Comment lines (lines begininning with the # character) are ignored. If

the technology file also contains a tfStreamIoTable section, the map file entries will be merged and

will overwrite tfStreamIoTable entries.

Laker stipple patterns of size 4x4, 8x8, 16x16 and 32x32 are supported, other stipple pattern sizes

will be rounded up to the next supported size. Currently only layer colour / stipple / linestyle data

and stream number / datatype info is read from the Laker techFile.

2.1.13 File->Import->TechFile

The File->Import->TechFile command displays the Import TechFile dialog.

Figure 14 - Import Glade TechFile

August 30,
2023

GLADE REFERENCE MANUAL

34

A Glade technology file can be used when no Cadence / Laker techFile is available. The Technology

File can be chosen using the file chooser button. Into Library specifies the library name, and the

library will be created if it does not already exist. If the library does exist, the imported techFile will

be merged with the existing one. Database units/micron sets the internal database resolution; in

most cases 1000 is suitable.

2.1.14 File->Import->GDS2

The File->Import->GDS2 command displays the Import GDS2 dialog:

Figure 15 - Import GDS2

The Input File can be chosen using the file chooser button. Multiple GDS2 files can be read if they are

entered separated by a comma. If the file name extension is '.gz' then the compressed file will be

unzipped on the fly.

August 30,
2023

GLADE REFERENCE MANUAL

35

The Library Name field specifies the library name that the GDS2 will be imported to. If you have

previously read in a techFile, the library field will be preset to this library name. If the library does

not exist, it will be created with a default techFile.

For debugging purposes, the GDS2 can be dumped to a readable ASCII format if the Dump to File

button is checked and a file name given.

An X offset and Y offset can be specified. The specified offsets are added to all coordinates in the

design, in effect moving the origin of the design. Note that offsets are applied BEFORE any user-

specified Scale Factor.

GDS2 can be scaled while read in if the Scale Factor field is set to a number other than 1. For

example, if a scale factor of 0.5 is chosen, all coordinates will be multiplied by 0.5 and the design is

shrunk by a factor of 2. This can be useful for scaling entire design databases.

The View Name specifies the view name created when a cell is imported. If cell mapping is used, this

value will be overridden by the map library/cell/view names.

You have a choice of importing all layers, layers defined in the techFile or just a single layer in the

Import Layer(s) field. When Single is selected, a GDS2 Number and GDS Datatype need to be

specified for the layer, and only shapes on this layer/datatype will be imported.

When cells are imported, if a cell of the same name exists you have 3 options available in the

Duplicate Cells field. Overwrite means the new cell will replace the existing cell. Ignore will mean the

new cell definition is ignored, along with all data in it. Merge means the original cell data is

preserved, and any data in the new cell is added to it. This may cause duplicate shapes, but can be

used to merge GDS data.

GDS2 structure and array names can have their Case preserved, forced to upper case or lower case

depending on the 'Case' radio buttons. Note that if you have a structure named 'AND2' and one

called 'and2' and do not preserve case, then the second structure encountered will give rise to a

duplicate cell and will be handled by the settings in the Duplicate Cells field..

Convert Manhattan 2 point paths converts paths to rectangles or H/V segs. This can result is smaller

memory usage for designs that use lots of 2 point paths for e.g. metal fill.

GDS2 properties can be used to import net names and instance names into the Glade database.

Many layout editors and place & route tools can output this data, and if GDS2 properties are present

with the chosen attribute numbers then net and/or instance names will be annotated into the

database. The Net Name Attr is the number of the attribute used to read net names from. The Inst

Name Attr is the number of the attribute used to read instance names from. The Dev Name Attr is

the number of the attribute used to read device names from.

Set Library dbu/UU from GDS will set the library database units from that specified in the GDS2 file.

This should normally be checked if importing into an empty library. If you want to import GDS2 data

into an existing library, uncheck this so the existing library units can be used; the GDS2 data will be

scaled to match if the GDS2 units differ from the library units. Note this scaling occurs before any

user-defined offset or user-defined scale factor is applied.

August 30,
2023

GLADE REFERENCE MANUAL

36

Convert via cells to vias will identify potential via cells in the GDS. A via cell is a cell with 3 layers, of

which two are of function ROUTING and one of function CUT, as defined in the techFile. A via will be

created for each distinct cell and added to the library. On stream out via Export Gds2, vias can be

converted back to cells.

Report Dubious Data will give warnings/errors to the message window if dubious data is

encountered, such as polygons with less than 3 vertices.

Report cell names read will write each cell (GDS STRUCT) encountered in the input GDS data. For

large designs this can slow things down so by default it is turned off.

Open Top Cell(s) will attempt to identify and open cells that appear to be the 'top cell' of a GDS file. A

top cell is not referenced by other cells, and contains one of more cell placements.

Import PCell properties will import PCell info if it has previously been exported to GDS2 by the Export

GDS2 command.

The GDS2 reader is single pass. As forward references are allowed in GDS2 (a cell, or GDS structure,

can be referenced in a SREF before the cell has been defined), after reading the GDS a recursive

check is made to ensure all cells have valid bounding boxes.

GDS2 magnification is supported in Glade. GDS SREFs or AREFs (instances or arrays in Glade) can only

have Manhattan rotations. This is to maintain compatibility with Cadence Virtuoso, which has the

same limitation.

GDS2 arrays are not allowed to have non-orthogonal row/column spacing. A warning is issued if

encountered, and they will be represented as orthogonal arrays. This is consistent with Cadence

Virtuoso and the GDS2 'specification'.

If a GDS file is imported without a Glade techFile having been previously read which defines the

mapping between layer names/purposes and GDS layer numbers / datatypes, then the GDS layers

are mapped to layer names e.g. L0 P0 for the first GDS layer/datatype shape encountered etc. The

layer name assigned (L0) does NOT equate to the GDS layer number, it represents the first (internal)

layer in the techFile. For this reason it is strongly recommended that you import GDS2 after

importing a techFile containing layer names and GDS layer/datatype mappings.

If a GDS file is imported into an existing library containing cellViews, any existing cellView of the

same name as a GDS2 struct (cell) will be handled by the Duplicate Cells setting.

GDS2 cells (STRUCTs) can be mapped to cellViews using cell mapping tab:

August 30,
2023

GLADE REFERENCE MANUAL

37

Figure 16 - Import GDS2

The + button adds an entry to the map table, the - button removed a selected entry. The GDS Name

field specifies the GDS2 STRUCT name, and the Library Name, Cell Name and View Name specify the

cellView to map this STRUCT to. The cell mapping can be loaded or saved to a file; the format is ascii

and consists of 4 values per line (library name, cell name, view name and GDS name) separated by

whitespace. The same format is used by the cell map table in the File->Export->GDS2 command.

2.1.15 File->Import->OASIS

The File->Import->OASIS command displays the Import Oasis dialog.

August 30,
2023

GLADE REFERENCE MANUAL

38

Figure 17 - Import OASIS

OASIS is a replacement for GDS2 with data compression to give much smaller file sizes. Typically 10-

50x compression compared to GDS2 is achieved. The OASIS reader supports CBLOCK compressed

records and both strict and non-strict mode OASIS files.

The OASIS Input File to be imported can be chosen using the file chooser button. A Library name to

import the OASIS into MUST be specified, and will be created if it does not already exist. Multiple

OASIS files can be read if they are entered separated by a comma.

An X offset and Y offset can be specified. The specified offsets are added to all coordinates in the

design, in effect moving the origin of the design. Note that offsets are applied BEFORE any user-

specified Scale Factor.

OASIS data can be scaled while read in if the Scale Factor field is set to a number other than 1. For

example, if a scale factor of 0.5 is chosen, all coordinates will be multiplied by 0.5 and the design is

shrunk by a factor of 2. This can be useful for scaling entire design databases.

The View Name specifies the view name created when a cell is imported. If cell mapping is used, this

value will be overridden by the map library/cell/view names.

When cells are imported, if a cell of the same name exists you have 3 options available in the

Duplicate Cells field. Overwrite means the new cell will replace the existing cell. Ignore will mean the

new cell definition is ignored, along with all data in it. Merge means the original cell data is

preserved, and any data in the new cell is added to it. This may cause duplicate shapes, but can be

used to merge OASIS data.

August 30,
2023

GLADE REFERENCE MANUAL

39

Oasis cell and array names can have their Case preserved, forced to upper case or lower case

depending on the 'Case ' radio buttons. Note that if you have a cell named 'AND2' and one called

'and2' and do not preserve case, then the second cell encountered will give rise to a duplicate cell.

Convert Manhattan 2 point paths converts paths to rectangles or H/V segs. This can result is smaller

memory usage for designs that use lots of 2 point paths for e.g. metal fill.

If Report dubious data is checked, errors are reported for e.g. polygons with less than 3 vertices. If

Allow non-printing characters in strings is checked, then any valid ascii character is allowed in e.g.

text names; else only printing characters as defined in the Oasis spec are allowed.

Report cell names read will write each cell encountered in the input OASIS data. For large designs

this can slow things down so by default it is turned off.

Open Top Cell(s) will attempt to identify and open cells that appear to be the 'top cell' of a OASIS file.

A top cell is not referenced by other cells, and contains one of more cell placements.

At present the following OASIS constructs are silently ignored:

XNAME
XELEMENT
XGEOMETRY
PROPERTY

OASIS cells can be mapped to cellViews using cell mapping tab.

August 30,
2023

GLADE REFERENCE MANUAL

40

Figure 18 - Import OASIS

The + button adds an entry to the map table, the - button removed a selected entry. The OASIS

Name field specifies the OASIS cell name, and the Library Name, Cell Name and View Name specify

the cellView to map this name to. The cell mapping can be loaded or saved to a file; the format is

ascii and consists of 4 values per line (library name, cell name, view name and OASIS name)

separated by whitespace. The same format is used by the cell map table in the File->Export->OASIS

command.

2.1.16 File->Import->LEF

The File->Import->LEF command displays the Import LEF dialog.

Figure 19 - Import LEF

August 30,
2023

GLADE REFERENCE MANUAL

41

The LEF file(s) to be imported can be chosen using the file chooser button. Multiple LEF files may be

read by selecting each one in the file browser, or if they are entered separated by a comma. If the

file name extension is '.gz' then the compressed file will be unzipped on the fly. Into Library specifies

the library to import the LEF into, and will be created if it does not already exist. Multiple LEF files

can be read, if subsequent LEF files redefine sites or macros previously defined they will be

overwritten. A technology LEF should always be read first - this contains layer definitions for routing

and cut layers. Note that all LEF files should have a VERSION statement to be valid LEF files.

If the LEF UNITS are larger than the database units (by default 1000 dbu/micron) e.g. 2000, then the

library database units are changed to the LEF UNITS. For this reason one should ensure that the first

LEF file read has the largest UNITS.

LEF Macros are imported as cells with a view type of 'abstract'. A rectangle on the system layer

'boundary' is created for each macro according to the macro's SIZE . LEF OBS statements create

shapes on the 'boundary' purpose for that shape, and LEF PORT statements create shapes on the

'pin' purpose.

If the Generate pin labels option is set, text labels are created for the LEF pins on the system Text

layer and can be displayed by making labels visible - see the Display Options command. Size sets the

size of the generated labels. The labels are generated on a layer as specified by the Label Layer field;

either the system layer TEXT purpose drawing or the same layer as the pin shape, but with purpose

'txt'. If Generate a label for all pin shapes is checked, multiple labels will be generated for each pin

shape. This is not usually desirable for standard cells, but can be useful for large macros.

If a LEF file is imported into an existing library containing cellViews, any existing cellView of the same

name as a LEF macro and view 'abstract' will NOT be overwritten.

2.1.17 File->Import->DEF

The File->Import->DEF command displays the Import DEF dialog.

Figure 20 - Import DEF

The DEF file to be imported can be chosen with the file chooser button. If the file name extension is

'.gz' then the compressed file will be unzipped on the fly. Into Library specifies the library to import

the DEF into, and will be created if it does not already exist. LEF must have previously been imported

August 30,
2023

GLADE REFERENCE MANUAL

42

to create abstract views for all components defined in the DEF COMPONENTS section; however you

can set the View Name to 'abstract' when importing DEF to create an abstract for use by other DEF

files, for example for a hierarchical design. A rectangle on the system 'boundary' layer is created

according to the DEF DIEAREA statement.

If Import special net routing is checked, special net routing will be created in the design. If it is not

checked only the connectivity information is imported. If Import regular net routing is checked,

regular net routing will be created in the design. If it is not checked only connectivity information is

imported. If ECO placement mode is checked, the DIAREA section of the DEF is updated, the

COMPONENTS section of the DEF file will be parsed and instance origins and orientations of the

current cellView will be updated, and the PINS section of the DEF will be parsed, replacing existing

pins. All components in the ECO file must exist in the current open cellView. If Report missing pin

connections to special nets is checked, then missing pin connections will be reported. If Report

unplaced components is checked, the names of unplaced components will be reported as a warning,

otherwise unplaced components will be silently imported.

Import DEF will expect all referenced macros to have been previously imported by the Import LEF

command as abstract views. Macros can be either imported into the same library as the DEF, or in

multiple libraries, in which case Import DEF will search the libraries to resolve instance masters.

However there is a restriction in that DEF must be imported into a library that has had a technology

LEF imported (this is so the library has layer information such as layer type of routing, cut etc.

defined). Failure to do so will give rise to via layers not being correctly recognised.

If you are importing hierarchical DEFs, you need to import the child cell DEF files first and set the

View Name to abstract. You should also import each child DEF into a unique library, which has its

technology file and technology LEF already imported. The reason is that P&R tools create DEF

viaRule vias with names that may not be unique between different DEF files (e.g. a typical viaRule via

called M1M2GEN may have variants M1M2GEN_1, M1M2GEN_2 etc. created). So if you try and

import multiple DEFs into a single library, you will most likely get duplicate via name warnings, and

only the viaRule vias of the first DEF file will be used.

So for example a section of Python code to load sub block DEFs and a top level DEF could be:

from ui import *
gui = cvar.uiptr
gui.importTech("lib1", "my.tch")
gui.importLef("lib1", "tech.lef")
gui.importLef("lib1", "stdcells.lef")
gui.importTech("lib2", "my.tch")
gui.importLef("lib2", "tech.lef")
gui.importDef("lib2", "abstract", "block1.def")
gui.importTech("lib3", "my.tch")
gui.importLef("lib3", "tech.lef")
gui.importDef("lib3", "abstract", "block2.def")
top level DEF
gui.importDef("lib1", "autoLayout", "top.def")

August 30,
2023

GLADE REFERENCE MANUAL

43

Note that if you import DEF which references multiple libraries created by importing LEF, all the LEF

libraries must have the same LEF UNITS!

Import DEF creates a cellView with a cell name as defined by the DEF DESIGN keyword.

2.1.18 File->Import->Verilog

The File->Import->Verilog command displays the Import Verilog dialog.

Figure 21 - Import Verilog

The Verilog File to be imported can be chosen with the file chooser button. Into Library specifies the

library to import the Verilog into, and will be created if it does not already exist. The Power net name

and Ground net name will be used to connect any logic 1 (verilog 1'b1) and logic 0 (verilog 1'b0) nets

to. Verilog modules will be imported into the database as verilog views. Leaf cells must exist as

abstract views (from Import LEF) for flattening to work. If Flatten hierarchy to autoLayout view is

checked, the top cell as specified by Top Cell Name will be flattened into the view specified by To

view, and Verilog leaf cells mapped to LEF cells of the same name. During the flattening process,

instance pins on leaf cells are connected to the power and ground nets of the same name. Pins are

created for inputs and outputs of the top level module. The pins will be on the Horizontal pin layer

for pins on the left and right of the block and on the Vertical pin layer for pins on the top and bottom

of the block. Aspect ratio sets the aspect ratio of the block; the number is the ratio of height to

width. Utilisation sets the ratio of cell area to design boundary size. Rows are created in the design

and cells are placed randomly in the rows, spaced by 2 times the site width.

Verilog modules are imported as cells with a view type of 'verilog' if not flattened.

Only basic structural level Verilog is supported. Simple ASSIGN statements are supported.

2.1.19 File->Import->ECO

The File->Import->ECO command displays the Import ECO dialog.

August 30,
2023

GLADE REFERENCE MANUAL

44

Figure 22 - Import ECO

This is used for importing an ECO file to make changes to the connectivity of the current open

design.

An example of ECO file syntax is as follows. Lines beginning with a '#' are comments.

- Detach Pin AF|AFFF|U179.B from Net AF|AFFF|N351 ;
- Delete Pin AF|AFFF|U179.B ;
- Detach Pin AF|AFFF|U179.A from Net AF|AFFF|N356 ;
- Delete Pin AF|AFFF|U179.A ;
- Detach Pin AF|AFFF|U179.Y from Net AF|AFFF|N368 ;
- Delete Pin AF|AFFF|U179.Y ;
- Change Cell AF|AFFF|U179 from Model NOR2X1 to Model NOR2X2 ;
- Add Pin AF|AFFF|U179.B ;
- Attach Pin AF|AFFF|U179.B from Net AF|AFFF|N351 ;
- Add Pin AF|AFFF|U179.A ;
- Attach Pin AF|AFFF|U179.A from Net AF|AFFF|N356 ;
- Add Pin AF|AFFF|U179.Y ;
- Attach Pin AF|AFFF|U179.Y from Net AF|AFFF|N368 ;

2.1.20 File->Import->DXF

The File->Import->DXF... command displays the Import DXF dialog.

Figure 23 - Import DXF

DXF is a common drafting format. DXF file specifies the name of the DXF file to import; the file can
be chosen with the file browser button. A library must be specified; it will be created if it does not
already exist. A cell name to import the drawing into must also be specified; it defaults to 'top'.
Hierarchical designs can be imported.

2.1.21 File->Import->EDIF

The File->Import->EDIF… command displays the Import EDIF dialog.

August 30,
2023

GLADE REFERENCE MANUAL

45

Figure 24 - Import EDIF

EDIF is a format for exchanging schematic and netlist data. EDIF File specifies the name of the EDIF
file to import. Into Library specifies the library name to import to. Scale defines the resulting
database units; 160dbu/uu is typical for Cadence compatible schematics. From EDIF scale sets the
database units per user unit (dbu/uu) to that defined by the EDIF numberDefinition entry.

When exporting EDIF from another CAD system, symbol libraries should be exported as externals in
EDIF. Then, when importing EDIF into Glade, matching libraries should be opened before the import.
The Glade symbol libraries will obviously need to have the same size symbols, with the same pin
names/locations as the originals. Alternatively it is possible to export symbol libraries in EDIF and
have them created in Glade.

Although EDIF is supposed to be a ‘standard’, interpretation is another matter and how design data
is exported is very much vendor-dependent.

2.1.22 File->Import->DSPF

The File->Import->DSPF… command displays the Import DSPF dialog.

DSPF File specifies the name of the DSPF file to import. Into Library specifies the library to import
into. Store Parasitic Capacitors reads the C….. lines in the DSPF and creates parasitic capacitors and
their subnodes. Store Parasitic Resistors reads the R… lines in the DSPF and creates parasitic resistors
and their subnodes. The rectangular resistor shapes (defined by their $X, $Y, $L, $W values, plus
their subnode $X, $Y values) are created in the top level cell. Store Instances generates instance
masters and instances in the top level cell.

2.1.23 File->Export->TechFile

The File->Export->TechFile command displays the Export TechFile dialog.

August 30,
2023

GLADE REFERENCE MANUAL

46

Figure 25 - Export TechFile

Technology File specified the name of the technology file to write and can be chosen using can be

selected by using the file chooser button. From Library specifies a library to export the techFile from.

If Save system layers is checked, they will be written to the techFile. This is only necessary if you do

not want to use the default layer colours e.g. if you want a white background, you need to set the

'backgnd' system layer colour to white, and set the 'select' colour to something other than white,

and e.g. the 'cursor' colour to something other than yellow etc.

2.1.24 File->Export->GDS2

The File->Export->GDS2 command displays the Export GDS2 dialog.

Figure 26 - Export GDS2

Output file specifies the name of the GDS2 output file and can be selected by using the file chooser
button. From Library specifies a library to export GDS2 from.

Export Cells controls which cells are output. If you want to output only certain cells in the design,
specify them in the Export Cells Cell Names field and uncheck the All? button. Else if All? is checked

August 30,
2023

GLADE REFERENCE MANUAL

47

then all cells in the library will be exported. If Child Cells? is checked, then cells are exported to
match the instances in the design hierarchy being exported.

The View name(s) field allows you to specify what views are exported. It is populated by default with
all the view names found for the library. The view names can be delimited by whitespace. Note for
example if you want to output from a LEF/DEF top level cellView, you will need to specify autoLayout
(the view name of the DEF top level), abstract (the view name of the LEF cells) and layout (the view
name of the vias). If your design contains cells with multiple views of viewType layout, then this field
is automatically populated with the view names.

Cells specified in the Export Cells field will be output with all child cells i.e. the complete hierarchy
will be output, thus the resulting GDS2 will be complete, as long as Child Cells? is checked.

Output Layers allows you to control which GDS layers are exported. All will output all layers, Visible
will output layers currently set visible in the LSW, and This Layer will only output a specific layer
chosen by the layer chooser.

Instance names can be output as properties with the default GDS2 attribute number 102 if Output
Inst Names box is checked. Net names of shapes can be output with default GDS attribute number
23 if the Output Net Names box is checked. Device names of shapes can be output with default GDS
attribute number 7 if the Output Device Names box is checked. These numbers are arbitrary and can
be changed as desired.

If Output using gzip compression is checked, the GDS2 data is compressed using the gzip algorithm. If
Report cell names written is checked, cell names are output to the message window as they are
written. Snap grid for circles/arcs snaps the vertices of arcs/circles to the specified grid in microns.
Circles are output as GDS boundaries and lines/arcs as zero width paths.

Output vias as cells writes vias as cell instances with the cell master name equal to the instance
name. This is typically useful for LEF/DEF where you don't want to flatten the vias into their
individual shapes.

Export PCell Properties allows Glade to write metadata as GDS2 properties that can be read back in
using the Import GDS2 command, thus maintaining PCell information between design transfer. This
may be incompatible with some GDS2 readers; it has been tested with Virtuoso which just ignores
the metadata.

GDS2 cells (STRUCTs) can be mapped from cellViews using the cell mapping tab.

August 30,
2023

GLADE REFERENCE MANUAL

48

Figure 27 - Export GDS2

The + button adds an entry to the map table, the - button removed a selected entry. The GDS Name
field specifies the GDS2 STRUCT name, and the Library Name, Cell Name and View Name specify the
cellView to map to this STRUCT. The cell mapping can be loaded or saved to a file; the format is ascii
and consists of 4 values per line (library name, cell name, view name and GDS name) separated by
whitespace. The same format is used by the cell map table in the File->Import->GDS2 command. The
map table is automatically populated with potentially conflicting cell/view names that would
normally map to the same GDS2 STRUCT name. In this case each cell/view combination will have a
map table entry, with an auto generated GDS2 name which is of the form <cellname>_01,
<cellname>_02 etc.

2.1.25 File->Export->OASIS

The File->Export->OASIS command displays the Export OASIS dialog.

August 30,
2023

GLADE REFERENCE MANUAL

49

Figure 28 - Export OASIS

Output File specifies the OASIS output file name and can be selected by using the file chooser
button. From Library specifies the library to export OASIS from.

Export Cells controls which cells are output. If you want to output only certain cells in the design,
specify them in the Export Cells Cell Names field and uncheck the All? button. Else if All? is checked
then all cells in the library will be exported. If Child Cells? is checked, then cells are exported to
match the instances in the design hierarchy being exported.

The View name(s) field allows you to specify what views are exported. The view names can be
separated by a comma or a space. They are populated by default from the views found in the library.

Output Layers allows you to control which OASIS layers are exported. All will output all layers, Visible
will output layers currently set visible in the LSW, and This Layer will only output a specific layer
chosen by the layer chooser.

If Strict Mode is checked, names of cells, text strings, layers, property names and property strings are
collected together into tables and referenced by an offset in the END record as per the OASIS
standard. In Strict mode, if Write cell offsets is checked, the property S_CELL_OFFSET is written for
each cell in the cell name table so that random access to cells are possible allowing e.g.
multithreaded reading of the OASIS file. If CBLOCK compression is checked, strict mode tables and
cell data is compressed using RFC1951 compression. This can result in significant reductions in file
size.

If Report cell names written is checked, cell names are output to the message window as they are
written. Snap grid for circles/arcs snaps the vertices of arcs/circles to the specified grid in microns.
Circles are output as OASIS polygons and lines/arcs as zero width paths.

OASIS cells can be mapped from cellViews using cell mapping tab.

August 30,
2023

GLADE REFERENCE MANUAL

50

Figure 29 - Export OASIS

The + button adds an entry to the map table, the - button removed a selected entry. The OASIS
Name field specifies the OASIS cell name, and the Library Name, Cell Name and View Name specify
the cellView to map to this cell. The cell mapping can be loaded or saved to a file; the format is ascii
and consists of 4 values per line (library name, cell name, view name and OASIS name) separated by
whitespace. The same format is used by the cell map table in the File->Import->OASIS command.
The map table is automatically populated with potentially conflicting cell/view names that would
normally map to the same OASIS cellname. In this case each cell/view combination will have a map
table entry, with an auto generated OASIS cellname which is of the form <cellname>_01,
<cellname>_02 etc.

2.1.26 File->Export->LEF

The File->Export->LEF command displays the Export LEF dialog.

Figure 30 - Export LEF

August 30,
2023

GLADE REFERENCE MANUAL

51

LEF File specifies the file to export in the 'LEF file' field which can be set using the file chooser button.
From Library specifies the library to export from. Either all cells can be written, if Export all cells is
checked, or just the currently open cell. If the Write Technology is checked, then the LEF technology
section is written (layer widths/spacings, vias definitions etc). Power Nets specifies power pins in the
LEF macros that should have their USE set to POWER. Ground Nets specifies ground pins in the LEF
macros that should have their USE set to GROUND. Write Separate Ports writes each port shape as a
separate PORT definition in the LEF.

If you want to export LEF based on cells imported from GDS2 or OASIS, you will need to do 2 things:

1. Prepare your techfile. For all the routing layers (and possibly the via layers) you will need 4
purposes per layer - the normal 'drawing' purpose that GDS is imported to, a 'boundary'
purpose that will be used to represent obstructions, a 'pin' purpose that represents pin
shapes, and optionally a 'net' purpose (not actually needed for LEF generation, but if you're
going to import DEF at any stage it is used for routing tracks).

You should also set in the techfile layer FUNCTION keywords. E.g.

FUNCTION metal1 net ROUTING ;
FUNCTION metal1 boundary BLOCKAGE ;

FUNCTION via1 net CUT ;

These will ensure LEF technology section contains the layer function.

2. Prepare a set of extraction rules for generating abstract views from the (GDS imported)
layout views. The extraction rules might look like this:

Process all views in a library
from ui import *

print "Import GDS2"
libName = "my_library"
gui = cvar.uiptr
gui.importTech(libName, "my_techfile.tch")
gui.importGds2(libName, "my_gdscells.gds")

print "Running abstract generation"
lib = getLibByName(libName)
cellNames = lib.cellNames()

for cell in cellNames :
 print "Process cell ", cell
 cv = lib.dbOpenCellView(cell, "layout", 'r')
 geomBegin(cv)

 # Set the extracted view name to abstract
 setExtViewName("abstract")

 # Get raw layers – set to your layer names
 metal1 = geomGetShapes("metal1", "drawing")
 via12 = geomGetShapes("via1", "drawing")
 metal2 = geomGetShapes("metal2", "drawing")
 m1pins = geomGetTexted(metal1, "metal1", "text")

August 30,
2023

GLADE REFERENCE MANUAL

52

 m2pins = geomGetTexted(metal2, "metal2", "text")
 prBound = geomGetShapes("prBound", "drawing")

 # Form derived layers
 m1obs = geomAndNot(metal1, m1pins)
 m2obs = geomAndNot(metal2, m2pins)

 # Form connectivity
 geomConnect([
 [via12, metal1, metal2],
])

 # Label pin shapes
 geomLabel(m1pins, "metal1", "text")
 geomLabel(m2pins, "metal2", "text")

 # Let's convert the pins to trapezoids
 m1pintraps = geomTrapezoid(m1pins)
 m2pintraps = geomTrapezoid(m2pins)

 # Save pin shapes to extracted view.
 saveInterconnect([
 [m1pintraps, "metal1", "pin"],
 [m2pintraps, "metal2", "pin"]
])

 # Let's convert the obstructions to trapezoids (optional)
 m1traps = geomTrapezoid(m1obs)
 m2traps = geomTrapezoid(m2obs)

 # Save them to boundary purpose so they get written as 'OBS' in lef
 saveDerived(m1traps, "metal1", "boundary")
 saveDerived(m2traps, "metal2", "boundary")

 # Set some properties on the abstract that are used by LEF out
 abs = lib.dbOpenCellView(cv.cellName(), "abstract", 'a')
 abs.dbAddProp("class", "core")
 abs.dbAddProp("symmetry", "Y")
 abs.dbAddProp("site", "core")

 # Save the prBoundary
 saveDerived(prBound, "prBound", "boundary")

 # Exit DRC package, freeing memory
 geomEnd()
end for

Output the LEF file
print "Writing LEF"
gui.exportLef(libName, "test.lef", 0, 1, "vdd!", "gnd!")

print "Done!"

2.1.27 File->Export->DEF

The File->Export->DEF command displays the Export DEF dialog.

August 30,
2023

GLADE REFERENCE MANUAL

53

Figure 31 - Export DEF

DEF File specifies the file name to export to and can be set using the file chooser button. From
Library specifies the library to export from. The library, Cell Name and View Name will default to the
current open cellView.

You may selectively write parts of the DEF file by checking or unchecking the Components, Pins,
Regular Nets and Special Nets check boxes. For example DEF with just placement information would
require just the Components and Pins checked. You can also choose to write just connectivity of
nets, or the physical shapes as well if Output regular net routing / Output special net routing is
checked.

2.1.28 File->Export->Verilog

The File->Export->Verilog command displays the Export Verilog dialog.

Figure 32 - Export Verilog

Verilog File specifies the file to export to and can be set using the file chooser button. From Library
specifies the library name. The library, Cell Name and View Name fields are pre-seeded with the
currently open cellView. Note that Verilog can only be exported from a cellView that has
connectivity. If Mode is set to Flat, the Verilog netlist will be a flat representation of the top level

August 30,
2023

GLADE REFERENCE MANUAL

54

design, else it will be hierarchical. Switch List and Stop List set the switch and stop lists for the
netlister during hierarchical netlisting, and are space-delimited lists of view names. Switch and stop
lists are named in SwitchList Name. To create a new name group, edit the SwitchList Name and set
the Switch List and Stop List. The new named group will be saved in the gladerc.xml preferences file.

2.1.29 File->Export->DXF

The File->Import->DXF command displays the Export DXF dialog.

Figure 33 - Export DXF

DXF is a common drafting format. DXF file specifies the name of the DXF file to export; the file can be
chosen with the file browser button. From Library and From Cell default to the current open
cellView. If the cell contains hierarchy, subcells are also exported. If Export Text is checked, text
labels are output to the DXF file. If All layers is checked, all the cell's layers are output; if not, only
the currently visible layers will be output. Net Names as Text will output net names as text to the
DXF file. Net Text Height sets the text label height.

2.1.30 File->Export->CDL

The File->Export->CDL... command displays the Export CDL dialog.

August 30,
2023

GLADE REFERENCE MANUAL

55

Figure 34 - Export CDL

August 30,
2023

GLADE REFERENCE MANUAL

56

Figure 35 - Export CDL options

The Export CDL dialog can be used to write a flat netlist from a layout/extracted view, or a
hierarchical netlist from a schematic view. CDL is a spice like netlist format with some extensions
over spice syntax.

CDL File specifies the name of the CDL file to export; the file can be chosen with the file chooser
button. From Library, Cell Name and View Name default to the current open cellView. The Pin Order
List shows the order pins will be written in the extracted netlist .subckt header. This is so the user
can match the pin order to a simulation testbench etc. For a flat netlist the pin order can be changed
by clicking on a pin name and using the up/down arrow buttons to move the pin; pins are written in
the order of the list from top to bottom. For a hierarchical netlist, the pin order is obtained from the
NLPDeviceFormat property on the symbol view of the top level cellView. Global Nets defines nets
that should be global in the CDL netlist. They should be separated by a space character as delimiter.
Scale determines the scale of the units written to the CDL file. For Resistors, Use Model Name
specifies that the resistor model name should be output to the CDL file. Use Resistance from
property name specifies that the resistance, as given by the value of the property name, is output to
the CDL file rather than the model name. For Capacitors, Use Model Name specifies that the
capacitor model name should be output to the CDL file. Use Capacitance from property name
specifies that the capacitance, as given by the value of the property name, is output to the CDL file
rather than the model name. If Drop parasitic caps less than is checked, all parasitic caps less than

August 30,
2023

GLADE REFERENCE MANUAL

57

the specified value (in Farads) will not be output to the CDL file. If Merge parasitic caps is specified,
multiple parasitics between two unique nets will be merged into a single lumped cap between the
nets. For a hierarchical netlist from a schematic, the Switch List and Stop List control the netlist
hierarchy traversal. The Switch List is a list of view names that the netlister can descend into. The
Stop List is a list of views that the netlister will stop descending into, and instead write the device to
the netlist according to its NLPDeviceFormat property. The Switch List and Stop List have no effect
for layout view types. Switch and stop lists are named in SwitchList Name. To create a new name
group, edit the SwitchList Name and set the Switch List and Stop List. The new named group will be
saved in the gladerc.xml preferences file. Add .end for SPICE will add a .end line as the last line of the
netlist, useful if you are netlisting a schematic for Spice simulation. True Spice format will write the
netlist in SPICE compatible format, with no $ arguments. Annotate XY origins of devices annotates
the XY coordinate of the device origin as $X=, $Y=. Netlisting property name is the name of a NLP
expression property on the instance masters that will be used to control netlist formatting. It
defaults to NLPDeviceFormat. If not present, the netlister will use a default suitable for Spice/CDL.

2.1.31 File->Export->EDIF…

The File->Export->EDIF… command displays the Export EDIF dialog.

Figure 36 - Export EDIF

EDIF File specifies the file name to export to. Library , Cell Name and View Name set the design to
export, which defaults to the open cellView. External libraries specifies reference libraries that will
not be exported as libraries in EDIF, but as an external construct.

2.1.32 File->Print...

The File->Print… command prints the current design. The system printer options form is displayed
allowing the user to specify paper size, landscape/portrait mode etc. The design is printed directly as
it appears onscreen, so e.g. rulers etc. will be rendered. A white background should be chosen for
printing on normal paper, and layer colours chosen carefully to give best results.

2.1.33 File->Export Graphics...

The File->Export Graphics… command dumps the current window to a PNG, JPEG or SVG format file.
PNG format is smaller and has superior image quality to JPEG, at least for layout data. SVG (Scalable
Vector Format) can be scaled and/or zoomed without loss of image quality and is more suitable for
schematics/symbols.

2.1.34 File->Run Script...

The File->Run Script… command runs a python script. Python output is written to the message dock
window.

August 30,
2023

GLADE REFERENCE MANUAL

58

2.1.35 File->Edit ascii file...

The File->Edit ascii file... command opens a file chooser dialog and allows you to view and make
simple edits to any ascii file. If the file is a Python file (.py), then it has syntax highlighting. If the file is
modified, on closing the window a dialog prompts to save changes, do not save, or cancel the close.

Figure 37 - Edit ascii file

2.1.36 File->Exit

The File->Exit command exits Glade. Any designs opened are checked for changes before exiting. If
there are cells which have been edited, a list of the edited cells is displayed in the Save Cells dialog.

August 30,
2023

GLADE REFERENCE MANUAL

59

Figure 38 - Save Cells

If Save is clicked, all checked cells are saved and the program exits. If Don't Save is clicked, no cells
are saved and the program exits. If Cancel is clicked, no cells are saved and the program does not
exit. If Check All is clicked, all the cells in the cell list are checked. If Check None is clicked, all the cells
in the cell list are unchecked.

The Save Cells dialog is also displayed if the Glade window is closed via the window manager close
button and there are edited cells that are unsaved, and may be displayed if a crash occurs and Glade
is able to perform an orderly shutdown.

August 30,
2023

GLADE REFERENCE MANUAL

60

2.2 The Tools Menu

2.2.1 Tools->LSW

The Tools->LSW command toggles the display of the LSW.

The LSW (Layer Selection Window) is used to control layer display in Glade. It comprises a dockable

dialog box with a scrollable panel of layers - one for each layer defined in the technology file - plus

some system defined layers. Each layer in the LSW has 3 parts: a color box on the left which displays

the layer line and fill style; a layername box in the centre which displays the layer's name, and a

purpose box on the right which displays the layer's purpose, abbreviated to 3 characters (for

example 'drawing' becomes 'dwg', 'pin' becomes 'pin', 'boundary' becomes 'bdy' and 'net' is

represented as 'net').

The LSW shows user-defined layers and the system layers. System layers include the following:

• Layers y0-y9, used for temporary display purposes

• Layers annotate (purpose drawing, drawing1-9), used for schematic/symbol labels

• mpp - Used internally for MPP objects. Do not draw on this layer.

• boundary - used for cell boundaries for LEF cells and the DEF design boundary

• region - used to display DEF regions

• row - used to display rows from DEF

• marker - used for flagging DRC errors

• device - used for symbol shapes

• wire - used for schematic wires

• pin - used for schematic and symbol pins

• text - used for autogenerated text labels e.g. as a result of importing LEF

• hilite - used for displaying flightlines e.g. for connectivity

• select - used to highlight selected objects

• mingrid - used to draw the minor grid

• majgrid - used to draw the major grid

• axes - used to draw the axes

• cursor - used for the box or crosshair cursor

• viaInst - for via instances that are shown unexpanded

• instance - for instances that are show unexpanded

• backgnd - the background display colour (defaults to black, but can be set to any colour)

At the top of the LSW are four buttons NS (None selectable), NV (None visible), AS (All Selectable),

AV (All visible) which allow all layer selectability/visibility to be set at once. Below this are 4 buttons

M1 (save to memory 1), R1 (recall from memory 1), M2 (save to memory 2) and R2 (recall from

memory 2). These allow the current layer selectability / visibility to be saved and recalled for

frequent changes. As changes are made that affect the display (changing colour, fill pattern or layer

visibility) the display is automatically updated.

August 30,
2023

GLADE REFERENCE MANUAL

61

The LSW also has a menu bar, the menu bar has the Edit menu and Display menu. LSW Edit menu

commands are as follows.

2.2.1.1 Edit->Create Layer

The LSW Edit->Create Layer command displays the Create Layer dialog box.

1. Figure 39 - Create Layer

Layer Name specifies the name of the layer to be created. Purpose specifies the purpose of the layer.

The default is 'drawing'. Stream Layer sets the layer number used in GDS file import/export. Stream

datatype sets the datatype number used in GDS file import/export.

2.2.1.2 Edit->Delete Layer

The LSW Edit->Delete Layer command displays the Delete Layer dialog box.

Figure 40 - Delete Layer

Layer to delete specifies the name of the layer to be deleted. A check is made of all cells in the library

to see if there are any shapes on that layer. If there are, a dialog is shown asking the user if they

really want to delete the layer, as all shapes in all cells in the library on that layer will be deleted,

along with the layer itself. If the user chooses to cancel, the layer is not deleted, nor are any shapes

on that layer.

LSW Display menu commands are as follows:

2.2.1.3 Display->Show User Layers

The LSW Display->Show User Layers command toggles the display of the user definable layers in the

LSW. The menu item is checked when user layers are displayed.

2.2.1.4 Display->Show System layers

The LSW Display->Show System Layers command toggles the display of the system layers in the

LSW. The menu item is checked when system layers are displayed.

2.2.1.5 Display->Show Valid layers

The LSW Display->Show Valid Layers command toggles the display of the valid layers in the LSW.

The menu item is checked when valid layers are displayed.

August 30,
2023

GLADE REFERENCE MANUAL

62

2.2.1.6 Display->Show CellView Layers

The LSW Display->Show CellView Layers command toggles the LSW display of the layers present in

the current open cellView and its child cells. Showing the cellView layers only reduces the number of

layers shown in the LSW.

2.2.1.7 Display->Show Viewport layers

The LSW Display->Show Viewport Layers command toggles the LSW display of the layers that are

visible in the viewport rectangle. The current visible layers are updated as the viewport is changed.

Showing the viewport layers only reduces the number of layers shown in the LSW.

2.2.1.8 Display->Show All Layers

The LSW Display->Show All Layers command shows all the user layers defined in the techfile as well

as the system layers.

2.2.1.9 Setting Layer Colours.

Left clicking the mouse on a LSW layer’s colour box allows layer colours to be set. A left mouse

button (LMB) click displays the colour selection palette (the OS native colour picker is used)

Figure 39 - Layer Chooser

The layer colour can be chosen by clicking on the desired colour or typing in RGB or HSV numbers.

The Alpha channel controls layer transparency. A value of 255 sets a layer opaque, values less than

this make the layer transparent.

2.2.1.10 Setting layer Stipple Patterns

Right clicking the mouse on a LSW layer’s colour box allows layer fill and line styles to be set. On the

Mac, ctrl+left mouse clicking is equivalent to right mouse clicking. A right mouse button (RMB) click

displays the stipple pattern editor for that layer:

August 30,
2023

GLADE REFERENCE MANUAL

63

Figure 40 - Edit Stipple

The stipple pattern of the layer can be either edited manually by left mouse clicking in the grid to

toggle the pixels, or an existing stipple pattern can be chosen from the Stipple combo box, and then

clicking the OK button. Stipple patterns of 8x8, 16x16 or 32x32 are supported and can be chosen

using the Stipple Size radio buttons. Invert will invert all bits in the stipple pattern; Mirror Y will

mirror the pattern about the Y axis and Mirror X will mirror the pattern about the X axis. New will

create a new stipple pattern (else an existing stipple pattern in the Stipple combobox is edited). All

On turns on all pixels; All Off turns off all pixels. Line Width sets the line width of the border of the fill

pattern - a value of 0 means use a single pixel line. Line Style sets the linestyle e.g. solid, dotted,

dashed etc.

2.2.1.11 Setting layer Selectability and Visibility

Using the mouse on a LSW's layer box allows visibility and selectability to be toggled. Middle mouse

button clicking (MMB) on the layername box toggles selectability On the Mac, there is no middle

mouse button, so ctrl+shift+left mouse button can be used instead. Whan a layer is not selectable,

the layer widget for that layer is grayed out in the LSW. Right mouse button clicking (RMB) on the

layername box toggles layer visibility (ctrl+left mouse on the Mac). When a layer is invisible, its color

box is hidden.

2.2.1.12 Setting the current layer

Left mouse button clicking on a LSW's layername box makes that layer the current editing layer. A

rectangle in brown highlights the current layer in the LSW. The current layer is used by the Create

Label, Create Path, Create Polygon, Create Rectangle, Create Circle, Create Ellipse and Create Arc

commands.

2.2.1.13 Setting the layer name

Double left mouse button clicking on a LSW's layer name box brings up a dialog box that allows the

layer name to be edited.

2.2.1.14 Setting the layer purpose name

Double middle mouse button clicking on a LSW's layer name box brings up a dialog that allows the

layer purpose name to be edited.

August 30,
2023

GLADE REFERENCE MANUAL

64

2.2.1.15 Querying layer properties

Double right mouse button clicking on a LSW's layer name box brings up a dialog box showing the

layer properties. Currently the layer properties that can be changed are:

• GDS2 layer number

• GDS2 datatype

• Layer minimum width

• Layer minimum space

• Layer Pitch

• Layer Direction

• Layer Resistance

• Layer Area Cap

• Layer Edge Cap

• Layer Order

• Layer Dim Factor (%)

2.2.1.16 Setting the layer order

Layers are drawn in the order they are shown in the LSW, from the top down. The default layer

order is the same as the order in the techFile. Layer order can be changed by left clicking and

dragging a layer in the LSW to a new location. If the techFile is exported the layers will be written in

the new order.

2.2.2 Tools->Message Window

The Tools->Message Window command toggles the display of the Output message window. The

Output message window can be used for entering Python commands and displays messages from

Glade. All messages in the Output window are written to the log file, called glade.log.

2.2.3 Tools->Library Browser

The Tools->Library Browser command toggles the display of the library browser.

August 30,
2023

GLADE REFERENCE MANUAL

65

Figure 41 - Library Browser

Use the library browser to open cellViews, rename cellViews, copy cellViews or delete cellViews. The

library browser shows the library name(s), the cell names and their view names as a tree. You can

interact with the library browser using the left and right mouse buttons. Left clicking on an entry will

expand or collapse that entry; left double clicking on a view name opens that cellView.

If you right click over the name of a library, a popup menu is displayed with the following menu

items:

• Save Library - saves the library.

• Save Library As... - saves the library to a new disk file.

• Close Library - closes the library.

• Rename Library - renames the library.

• Create CellView - creates a new cellView in the library.

• Tree View - toggles tree view vs flat view display of the library contents.

• Case Sensitive - toggles case sensitive sorting of cell names.

• Find... - Allows you to search for a cell by name

• Refresh - Refreshes the library browser's contents.

If you right click over a cell name, a popup menu is displayed with the following menu items:

• Delete Cell - deletes the cell and all its views from the library.

• Rename Cell - renames the cell and updates all references to it and its

cellViews within the library.

• Copy Cell - copies the cell and all its views to a new library/cell.

August 30,
2023

GLADE REFERENCE MANUAL

66

If you right click over the view name of a cell, a popup menu is displayed with the following menu

items:

• Open CellView - opens the cellView

• Delete CellView - deletes the cellView and purges it from memory. Note this does

not delete the cell in the library saved to disk.

• Rename CellView - renames the cellView and updates all references to it within the

library.

• Copy CellView- copies the cellView to a new cell and/or view name

• Properties - displays the cellView’s properties.

The library browser has the following menu commands:

• Library->New Lib - Creates a new library.

• Library->Open Lib - Opens a library.

• Library->Save Lib As... - Saves a library to disk.

• Library->Exit - exits the library browser and closes the window.

• View->Refresh - Refreshes the library browser display.

• View->Tree View - toggles tree view vs flat view display of the library contents.

• View->Case Sensitive - toggles case sensitive sorting of cell names.

• Edit->Find... - Allows you to search for a cell by name.

2.2.4 Tools->Hierarchy Browser

The Tools->Hierarchy Browser command displays the current edit cell's hierarchy in the hierarchy

browser dock window.

Figure 42 - Hierarchy Browser

The Hierarchy browser shows the design hierarchy. The root cell is shown with its subcells displayed

by their cell names. In addition to expanding or collapsing the list items by left clicking on the 'v'

boxes, several other operations can be performed.

August 30,
2023

GLADE REFERENCE MANUAL

67

Left mouse double clicking on any cell name will descend into that cell and it will be displayed in the

browser as the new root cell.

Right mouse clicking on any subcell name will show that instance's properties (and hence the

instance name).

Right mouse clicking on the root cell name will show a popup menu with the following menu items:

• Ascend - ascends to the parent cell of the current cell.

• Refresh - refreshes the hierarchy browser.

The hierarchy browser has the following menu commands:

• View->Inst View – toggles the hierarchy browser between display of instance names

and cell names.

• View->Case Sensitive – toggles case sensitivity.

• View->Refresh – refreshes the hierarchy browser contents.

2.2.5 Tools->Net Browser

The Tools->Net Browser command displays the current cell's nets in the net browser dock window.

Figure 43 - Net Browser

The cell name is shown as the root with its nets displayed.

Left mouse double clicking on a net will select all shapes of the net.

Right mouse button clicking on a net name will display a popup menu with the following menu

items:

• Select All Insts - Selects all the instances that connect to the net.

August 30,
2023

GLADE REFERENCE MANUAL

68

• Select Driver Inst - Selects the instance(s) that have output pin(s) connected to the

net, i.e. drive the net.

• Select Load Insts - Selects the instances that have input pins connected to the net,

i.e. are loads of the net.

2.2.6 Tools->Add Marker

The Tools->Add Marker command adds a marker at a specified location.

Figure 44 - Add Marker

The marker colour can be changed by the Marker Colour button, which displays the current marker

colour. Marker size sets the size of the marker in pixels, so the marker size remains unchanged with

zoom in/out operations. Line Width sets the linewidth; a linewidth of 0 or 1 is a single pixel line. The

Marker Coordinates are the XY location of the marker in microns.

Markers are useful for setting temporary reference points in layout. Like rulers, they are not

persistent i.e. they are not stored in any output format.

2.2.7 Tools->Clear Markers

The Tools->Clear Markers command clears all markers.

2.2.8 Tools->Netlist View

The Tools->Netlist View command opens the Netlist View window. This is a dock window to display

a Spice/CDL netlist for netlist driven layout.

August 30,
2023

GLADE REFERENCE MANUAL

69

Figure 45 - Netlist View

The Netlist View has several menu items.

2.2.8.1 File->Open

The Netlist View File->Open command loads a Spice or CDL file. The file is displayed in the Netlist

View window with syntax highlighting.

2.2.8.2 File->Save

The Netlist View File->Save command saves the current open file.

2.2.8.3 File Save As...

The Netlist View File->Save As… Saves the current open file to a (new) file.

2.2.8.4 File->Close

The File->Close command closes the current open file.

2.2.8.5 Edit->Undo

The Netlist View Edit->Undo command undoes an edit.

August 30,
2023

GLADE REFERENCE MANUAL

70

2.2.8.6 Edit->Redo

The Netlist View Edit->Redo command redoes an undone edit.

2.2.8.7 Edit->Cut

The Netlist View Edit->Cut command deletes the selected text.

2.2.8.8 Edit->Copy

The Netlist View Edit->Copy command copies the selected text to the clipboard.

2.2.8.9 Edit->Paste

The Netlist View Edit->Paste command pastes the text from the clipboard to the current cursor

location.

2.2.8.10 Edit->Find...

The Netlist View Edit->Find… command finds the specified text.

Figure 46 - Find Text

2.2.8.11 Edit->Goto Line...

The Netlist View Edit->Goto Line… command moves the cursor to the specified line number.

2.2.8.12 Layout->Map Devices

The Netlist View Layout->Map Devices command displays the Map dialog.

Figure 47 - Map Devices

August 30,
2023

GLADE REFERENCE MANUAL

71

The top table widget shows the device names found in the netlist in the first column. The second

and third column contains the cellName and viewName of the cellView to map this device to in the

layout. The lower level table widget shows the instance names found in the netlist in the first

column. The second and third column contains the cellName and viewName of the cellView to map

this instance to in the layout. Instance name mapping overrides device name mapping.

Device mapping defaults can be set in the techFile. For example,

MAP nch TO nmos layout ;

Maps the netlist device name to the layout cellView 'nmos13_multi layout'.

2.2.8.13 Layout->Gen Layout

The Netlist View Layout->Gen Layout command displays the Create Layout dialog.

The target cellView is specified using the Library Name / Cell Name / View Name fields. If Create m

factor instances is set, then if a netlist instance has a property 'm', multiple instances of the cell will

August 30,
2023

GLADE REFERENCE MANUAL

72

be created in the layout based on the value of the property, and the m property is not passed to the

layout PCell. If not checked, the m property is passed to the layout PCell, if the PCell is required to

handle this itself.

Scale Factor is not used when generating layout from a netlist.

Utilisation is used to create the cell boundary layer in the resulting layout view. The area of all the

layout instances is summed, and divided by 100/utilisation%. If Width is specified, the cell boundary

will be rectangular with the specified width, and height will be computed from the area/width. If

Height is specified, the cell boundary rectangle will have the specified height and the width will be

computed from the area/height. If both Width and Height are specified, then the cell boundary

rectangle will use the specified width and height.

Placement method can only be Area when generating layout from a netlist. Area arranges the layout

cells by type (PMOS/NMOS/resistor/capacitor).

The pin field allows pin width, side and layer to be specified for each pin. Pins are placed abutting

the cell boundary rectangle according to their side.

2.2.8.14 Layout->Clear Hilite

The Netlist View Layout->Clear Hilite command clears existing netlist/layout hilites.

August 30,
2023

GLADE REFERENCE MANUAL

73

2.3 The Window Menu

The Window menu is used to manage open design windows. It is dynamically built and updated as

windows are added or removed.

2.3.1 Window->Tab Style

The Window->Tab Style command changes the windowing mode to tab windows. Existing windows

will be closed.

2.3.2 Window->MDI Style

The Window->MDI Style command changes the windowing mode to MDI (Multiple Document

Interface) windows. Existing windows are closed.

2.3.3 Window->Close

The Window->Close command closes the current active window.

2.3.4 Window->Close All

The Window->Close All command closes all open windows.

2.3.5 Window->Tile

For MDI window mode, the Window->Tile command tiles the windows. Two open windows will be

tiled horizontally; three will be tiled with one on the left, and two stacked vertically on the right etc.

2.3.6 Window->Cascade

For MDI Window mode, the Window->Cascade command arranges the window in a cascading

fashion from the top left.

2.3.7 Window->Next

The Window->Next command changes the active window to the next open window in the window

list.

2.3.8 Window->Previous

The Window->Previous command changes the active window to the previous open window in the

window list.

2.4 The Help Menu

2.4.1 Help->Contents…

The Help->Contents... command displays the online help information.

2.4.2 Help->Index…

The Help->Index… command displays the online help index.

2.4.3 Help->About

The Help->About command displays about information.

2.5 Layout Menus

August 30,
2023

GLADE REFERENCE MANUAL

74

2.5.1 View Menu

2.5.2 View->Fit

The View->Fit command zooms the display to fit the currently cellView's bounding box. The

bounding box is scaled according to the View->Pan/Zoom Options Fit% value.

2.5.3 View->Fit+

The View->Fit+ command zooms to 10% bigger than the displayed cell's bounding box.

2.5.4 View->Zoom In

The View->Zoom In command zooms in on the current cell by a factor of two. You can also zoom in

by rotating the mouse wheel forward, or by pressing the right mouse button and dragging an area

from lower left to upper right you want to zoom in to.

2.5.5 View->Zoom Out

The View->Zoom Out command zooms out on the current cell by a factor of two. You can also zoom

out by rotating the mouse wheel backwards, or by pressing the right mouse button and dragging an

area from upper right to lower left. The zoom factor is the current viewport size divided by the drag

rectangle size.

2.5.6 View->Zoom Selected

The View->Zoom Selected command zooms to fit the window around the selected set.

2.5.7 View->Pan

The View->Pan command moves the centre of the display to the entered point. Note that panning

can also be achieved by dragging with the middle mouse button held down; the pan is done in real

time.

2.5.8 View->Pan to Point

The View->Pan to Point command displays a dialog box in which the X and Y coordinates to pan to

can be entered. The display is then centred on these coordinates.

2.5.9 View->Redraw

The View->Redraw command redraws the screen. The display in Glade is double buffered, so

redrawing consists of copying the back buffer to the front. This is fast, especially in the OpenGL

version of Glade which is accelerated by hardware when using modern graphics cards. If however

the display changes (e.g. by changing the layers that are visible in the LSW) then the back buffer is

drawn again. However, this is still fast.

2.5.10 View->Ruler

The View->Ruler command draws a ruler.

August 30,
2023

GLADE REFERENCE MANUAL

75

Figure 48 - Create Ruler

Manhattan, 45 degree and all angle rulers are supported. The popup dialog (toggle using F3 bindkey)

allows the ruler snap angle to be changed while entering the ruler. Checking the Invert text labelling

box puts the major/minor ticks on the opposite side of the ruler to normal. This can be useful when

measuring edges of shapes with dense fills where the ruler text is not easily visible. To more

accurately measure distances between shapes, you can turn gravity on, then the start and end

points of the ruler can snap to the shape edges. You can zoom and pan while drawing rulers.

2.5.11 View->Delete Rulers

The View->Delete Rulers command deletes all rulers.

2.5.12 View->View level 0

The View->View Level 0 command sets the display levels to 0. No contents of cells are visible.

2.5.13 View->View level 99

The View->View Level 99 sets the display levels to 99. Cells up to 99 levels of hierarchy will have

their contents displayed.

2.5.14 View->Previous View

The View->Previous View command sets the viewport to the last view before a pan/zoom/fit etc.

2.5.15 View->Cancel Redraw

The View->Cancel Redraw command cancels the current redraw. This can be useful on very large

designs.

2.5.16 View->Display Options

The View->Display Options command displays the Display Preferences dialog.

August 30,
2023

GLADE REFERENCE MANUAL

76

Figure 49 - Display Options (Object Settings)

Show Axes shows the X=0 and Y=0 axes.

Show Labels toggles the display of text labels. By default, text label display is turned off as in non-

OpenGL display mode, drawing text labels can be slow if there are many labels.

Show Tracks displays the track grid for each layer for DEF based designs.

Display Path Centreline shows the centreline of path objects. Display Path Outline draws the outline

of the path, based on its real width.

Display Origins - Labels shows the origin of text labels as a small cross. Display Origins - Instances

shows the origin of instances as a small cross. Note that instance origins are only displayed if their

bounding box is shown, i.e. they are at the display stop level.

Show Instance Names can be set to None, Master or Instance. With Master, the instance's master

cell name is shown inside the instance bounding box. With Instance, the instance name is shown

inside the instance bounding box.

Show Via Instance Names can be set to None or Master. This toggles the display of the via instance

master.

Label Display allows finer control of text labels. Display Rotated Labels if checked displays text

rotated as per its database orientation e.g. from GDS2. When unchecked, labels are displayed with

no rotation (horizontally). Display top level labels only if checked will only display labels at the top of

the cell hierarchy. Labels contained in lower levels will not be shown.

Label display scale factor will scale the displayed labels according to the scale factor set.

August 30,
2023

GLADE REFERENCE MANUAL

77

Transparent controls group selection. When checked, group members are selectable (and the group

bounding box shape is not). When unchecked, group members are unselectable, but the group

bounding box is. In non-transparent mode groups can be moved, copied, rotated etc. using the

group layer shape.

Figure 50 - Display Options (Display Settings)

Display Levels sets the levels of hierarchy that are displayed. A display level of 0, for example, means

only display shapes and instance bounding boxes in the current cell. Although the view level 99

command turns on viewing of 99 levels of hierarchy, there's really no limit.

Filter Shapes controls filtering of objects to speed redraw. When zoomed out, it makes no sense

drawing objects that are so small that they contribute nothing to the visible display. So with filtering

enabled, objects with a size smaller than the threshold (in pixels) are not drawn. Turning filtering off

is the same as setting the Threshold to 0. Note that path outlines are also subject to filtering; if the

path width is less than the threshold then only the path centreline is drawn. Filtering can have a vast

effect on redraw speed on large designs. The default filter level is 5 which is a good compromise of

detail versus performance.

Display Grid controls the display grid which can be one of None, Dotted or Line. The display major

grid is drawn using the LSW majgrid layer; the minor grid is drawn using the LSW mingrid layer.

Display Grid Settings. The Minor X and Y values set the dot or line spacing and are drawn using the

mingrid layer. The Major grid spacing is the number of minor grids per major grid dot or line; it

should be an integer, typically 5 or 10. The major grid is drawn using the majgrid layer.

August 30,
2023

GLADE REFERENCE MANUAL

78

Figure 51 - Display Options (Snap Settings)

Snap Grid controls cursor snapping. The cursor is snapped to the values specified in X and Y.

Snapping is modified by gravity; see the Selection Options dialog.

Snap Angle controls the angle that data can be entered for some shape creation and also for rulers.

Any allows all angles; 45 degrees and 90 degrees snap accordingly.

August 30,
2023

GLADE REFERENCE MANUAL

79

Figure 52 - Display Options (Miscellaneous)

Infix Mode is used for commands which can take the current mouse position rather than relying on

the user to click on the first point of the command.

Repeat commands will keep repeating a command until ESC is pressed.

Display coordinates in database units shows coordinates in DB units, rather than microns. This can

be useful when working with e.g. DEF files where the ascii coordinates in the file are in DB units.

Always popup option dialogs when checked will always show option dialogs for forms such as Create

Path. These option dialogs can be shown and hidden by toggling the F3 key. If Always popup option

dialogs is not checked, then the option forms will not be shown automatically (but can still be shown

by pressing F3). This is useful when entering e.g. a lot of polygons.

Immediate move/stretch of selected objects will let selected objects be moved by the cursor without

issuing a move/select command. The cursor changes according to the object. To use, select an object

in full mode, or an edge/vertex in partial mode. The cursor will change to a 4-way arrow (for full

mode select) or a 2-way arrow (for partial mode select). Then left click and drag to move or stretch

the object. The object is deselected afterwards, so to repeat the command, select another object.

Keep immediate move selected will keep objects selected after an immediate move/stretch;

otherwise all objects will be deselected.

Zoom centred on cursor sets the centre of the zoom to the cursor position; otherwise zoom in/out is

centred on the viewport. This affects both zoom in/out and mouse wheel zoom.

Auto focus sets input focus to the canvas whenever the mouse moves over it. If this option is

unchecked, then the user has to explicitly click on the main window in order to e.g. use bindkeys

August 30,
2023

GLADE REFERENCE MANUAL

80

after any operation that transfers focus to another window. Some window managers may override

this operation because they provide control of focus directly.

Auto raise raises the canvas window the mouse is over automatically. If this option is not set, the

canvas must be explicitly clicked on to make it the active window for accelerator key input.

Use true layer colour will use the layer colour/fill for drawing during Create/Move/Copy/Stretch

commands, rather than an outline drawn in the cursor layer colour.

Draw Moving Inst Contents draws the contents of instances and vias while creating, moving or

opying them. The contents are either shown with a hollow line fill in the cursor colour if Use true

layer colour is not checked, or using the real layer colour and fill style if that option is checked.

Use Design Rule Halo will perform real time DRC and highlight shapes that would give rise to DRC

MINSPACE violations. The violating shapes have a halo drawn round them which is the MINSPACE

distance away from their edges/vertices. Checking is done for shapes (not yet instances) that are

created/moved/copied/stretched, against existing shapes either at the top level of the hierarchy or

also lower levels. Hierarchy check depth is controlled by the display stop level, i.e. checking will be

performed to the depth of hierarchy that is displayed. DRD options controls which rules are checked;

Width if checked turns on width checking of shapes, using the MINWIDTH rule for the layer, Two

layer spacing turns on spacing checks between two different layers, using two layer MINSPACE rules.

Enclosure and Extension enable checking minimum enclosure/minimum extension rules using the

techFile MINENC / MINEXT rules.

Halo Colour is the layer colour used to draw the DRC violation halo.

RMB mode sets the operation of the right mouse button. It can be set to Glade mode (dragging the

mouse down zooms in, dragging it up zooms out), Virtuoso mode (dragging the right mouse in any

direction zooms in) or Special mode (dragging the right mouse down zooms in, dragging it up left

zooms out, dragging it up right does a window fit).

2.5.17 View->Selection Options

The View->Selection Options command displays the Selection Options form.

August 30,
2023

GLADE REFERENCE MANUAL

81

Figure 53 - Selection Options

Selection Mode is set to Full or Partial. Bindkey F4 toggles between these modes. Full mode selects

the entire object. Partial mode selects an edge or vertex of an object. Use Partial mode to select

edges or vertices for subsequent stretch commands.

Selection Type can be either Object mode or Net mode. In Object mode, only the object selected

becomes part of the selected set. In Net mode, if a selected object is part of a net then all shapes

that are part of that net are selected.

Show connectivity displays flightlines between instance pins that have connectivity. Max pins sets

the limit to the number of pins that a connectivity flightline is drawn. Show Inst Pins shows instance

pins as well as nets when Show Connectivity or Show selected item connectivity is checked. Show

selected item connectivity shows connectivity flightlines when an object is selected that has net

connectivity.

Limit instPin query for net will limit the number of instance pins shown in the Query Net dialog. This

is useful when querying power/ground nets which may have hundreds of thousands of special net

pins. Such a number of pins means the dialog is slow to build. Regular net pins are always shown.

Dim unselected objects will dim all unselected objects if any object(s) are selected. Unselected

objects will be dimmed according to the Dim factor specified. This is useful when selecting an object

e.g. a net by name in a large design and you want to display the selected object clearly. Dim unhilited

objects will dim all unhighlighted objects, if highlighting is used e.g. by the Trace Net command.

August 30,
2023

GLADE REFERENCE MANUAL

82

Gravity when enabled will snap the cursor box to the nearest shape edge or vertex. The Range field

determines how far an object edge can be from the current cursor position for gravity to take effect.

Gravity works for all shapes and also the bounding boxes of instances at the current level of

hierarchy only. Depth sets how far down the physical hierarchy shapes will be snapped to; for

example with depth=0 only shapes in the current cell will be snapped to. Note that the grid snapping

as set in the display options dialog overrides gravity snapping: in other words gravity snapping will

snap to the nearest coordinate on grid if an object's edge is not on grid.

Gravity snap to sets whether snapping to edges or vertices is carried out when gravity is on.

Gravity to Path sets whether gravity snaps to path centrelines or edges.

Display Cursor Box shows a small square box in the LSW cursor colour, centered on the cursor, which

is snapped to the current snap grid, or snapped to the nearest edge within gravity distance if gravity

is on.

Cross Cursor when checked will display the cursor as a crosshair rather than as a box.

Dynamic Highlight highlights the object that will be selected if the left mouse button is clicked in Full

selection mode. In Edge selection mode it highlights selectable edges, and in Vertex selection mode

it highlights selectable vertices.

2.5.18 View->Pan/Zoom Options...

The View->Pan/Zoom Options… command displays the pan / zoom options dialog.

Figure 54 - Pan / Zoom Options

Zoom in % sets the percentage that a zoom in changes the current magnification. For example 200%

zooms in by a factor of two. Zoom out % sets the percentage that a zoom out changes the current

magnification. For example 50% zooms out by a factor of two. Pan % sets the percentage of screen

width that is panned by the pan keys (left/right/up/down keys). For example 50% means shift the

viewport half of the current viewport width. Fit % sets the percentage of screen width occupied by

the current cellView’s bounding box when a Fit command is issued. It can be in the range 10%-100%.

2.5.19 Edit Menu

Note that there are several function keys that can be used during editing. F1-F9 are hard coded and

cannot be reassigned like bindkeys. On some platforms e.g. Mac, the function keys by default are

assigned to special actions by the OS (for example raising/lowering the brightness of the display). It

August 30,
2023

GLADE REFERENCE MANUAL

83

is possible to switch to normal Fn key mode operation (e.g. on the Mac by the Settings->Keyboard

dialog).

• Escape key - aborts the current command.

• Return key - completes a Create Path, Create Polygon, Create MPP, Create Wire or Reshape

command. The current cursor position is used as the last point. This is usually easier than

double clicking to complete these commands.

• Backspace key - deletes the last vertex during a Create Path, Create Polygon, Create MPP,

Create Wire or Reshape command.

• F1 key - opens the help browser.

• F2 key - toggles the Selection Options 'Gravity Mode' on/off.

• F3 key - toggles the command option dialogs.

• F4 key - toggles between Full and Partial selection modes. See Selection.

• F5 key - shows the Enter Coordinate dialog. For any command that normally takes a mouse

click to enter a coordinate, F5 allows the user to specify the coordinates through the Enter

Coordinates dialog box instead. For example, if you want to create a rectangle with

coordinates (0.0, 0.0) (2.0, 3.0), click on the Create Rectangle icon, then press F5 and enter

the first pair of coordinates and press OK. Then press F5 again and enter the second pair of

coordinates.

• F6 key - toggles the Selection Options 'Display Connectivity' mode on/off.

• F7 key – toggles the Selection Options ‘Selection Type’ mode between Object and Net.

• F8 key – toggles the Display Options ‘Immediate Move’ mode on/off.

• F9 key – cycles through the Snap Mode angle.

Also note that double clicking the left mouse button will add a final path/mpp point, or add a final

polygon point, or terminate the Reshape command.

2.5.20 Edit->Undo

The Edit->Undo command undoes the last edit made. Multiple undos can be carried out. Currently

the only operations that can be undone are Delete, Move, Move Origin, Copy, Rotate, Stretch,

Create, Merge, Chop, Flatten, Align, Reshape.

2.5.21 Edit->Redo

The Edit->Redo command redoes the last undo. Multiple redos can be carried out. Currently the only

operations that can be redone are Delete, Move, Move Origin, Copy, Rotate, Stretch, Create, Merge,

Chop, Flatten, Align, Reshape.

2.5.22 Edit->Yank

The Edit->Yank command copies the selected set into a yank buffer. The objects can then be pasted

into another cellView (or even the same cellView) using the Paste command.

2.5.23 Edit->Paste

The Edit->Paste command pastes a copy of the items in the yank buffer into the current cellView.

2.5.24 Edit->Delete

The Edit->Delete command deletes the current selected set. Deletes can be undone.

August 30,
2023

GLADE REFERENCE MANUAL

84

2.5.25 Edit->Copy

The Edit->Copy command copies the current selected set. The F3 key will toggle the Copy options

dialog.

Figure 55 - Copy

Snap Mode can be set to Manhattan, Diagonal or Any Angle. Copy Net info if checked will copy a

shape's net connectivity. If a shape is being copied, Change Layer will allow the layer of the new

shape to be changed to the one selected by the layer chooser. If Rows or Cols is set to a number

greater than 1, an array of objects will be copied with the spacing set by Row Spacing and Col

Spacing. If Mirror X is pressed (or the 'x' key) during a copy, the object is mirrored in the X axis. If

Mirror Y is pressed (or the 'y' key) during a copy, the object is mirrored about the Y axis. If Rotate is

pressed (or the 'r' key) the object is rotated 90 degrees anticlockwise.

If infix mode is on, the current cursor position is used for the reference coordinate. Else you will be

prompted to enter the reference coordinate. During a copy operation, the object(s) are shown as

outlines and delta coordinates (dX/dY) from the initial position are shown on the status bar.

2.5.26 Edit->Move

The Edit->Move command moves the current selected set. The F3 key will toggle the Move options

dialog.

Figure 56 - Move

Snap Mode can be set to Manhattan, Diagonal or Any Angle. If a shape is being moved, Change

Layer will allow its layer to be changed to the one selected by the layer chooser. If moving instances,

Snap insts to rows will snap instances to row objects if they exist. If Mirror X is pressed (or the 'x' key)

August 30,
2023

GLADE REFERENCE MANUAL

85

during a copy, the object is mirrored in the X axis. If Mirror Y is pressed (or the 'y' key) during a copy,

the object is mirrored about the Y axis. If Rotate is pressed (or the 'r' key) the object is rotated 90

degrees anticlockwise.

If infix mode is on, the current cursor position is used for the reference coordinate. Else you will be

prompted to enter the reference coordinate. During a move operation, the object(s) are shown as

outlines and delta coordinates (dX/dY) from the initial position are shown on the status bar.

2.5.27 Edit->Move By...

The Edit->Move By… command moves the current selected set by the distance specified in the Move

By dialog.

Figure 57 - Move By

2.5.28 Edit->Nudge...

The Edit->Nudge… command nudges the current selected set in small increments in X or Y.

The distance to nudge by is set according to the Nudge By choice. User deltaX/Y takes the values of X

delta and Y delta as the nudge distance. Snap Grid sets the nudge distance to the current X and Y

snap distances. Minor Grid sets the nudge distnance to the current X and Y display grid. Major Grid

sets the nudge distance to the minor display grid times the major grid multiplier.

After invoking the command, the left/right/up/down arrow keys moce the selected set according to

the nudge distance, until the command is aborted by pressing the ESC key. While the nudge

command is active, zooming, selecting/deselecting etc is available - but not panning via the arrow

keys.

2.5.29 Edit->Stretch

The Edit->Stretch command stretches the current selected edge or vertex. The F3 key will toggle the

Stretch options dialog.

August 30,
2023

GLADE REFERENCE MANUAL

86

Figure 58 - Stretch

Snap Angle can be set to Manhattan, Diagonal or Any Angle. If objects as well as edges or vertices

are selected, they are moved by the stretch distance. If Lock Diagonals is checked, diagonal edges

will be locked to 45 degrees, otherwise moving an edge adjacent to a diagonal may make the

diagonal edge become any angle. Lock Diagonals has no effect when stretching vertices. If Lock

endpoints is checked, then stretching a path segment at the beginning or ending of a path will split

the path at the start or end vertex, keeping the start/end vertex fixed and stretching the other part

of the split segment.

If infix mode is on, the current cursor position is used for the reference coordinate. Else you will be

prompted to enter the reference coordinate. During a stretch operation, the object

edge(s)/vertex(vertices) are shown as outlines and delta coordinates (dX/dY) from the initial position

are shown on the status bar.

2.5.30 Edit->Reshape

The Edit->Reshape command reshapes the currently selected edge of a polygon or path.

Figure 59 - Reshape

Snap Angle can be set to Manhattan, Diagonal or Any Angle.

To reshape an object, first select an edge of a polygon or the centreline of a path (in partial selection

mode). Then enter vertices you wish to add to the edge. The original start and end points of the

edge will be unchanged. Vertices can be added according to the Snap Angle.

Double click or press return to complete reshaping the edge. Pressing backspace will back up one

vertex. Although Reshape only works with paths and polygons, you can convert any object e.g. a

rectangle to a polygon using the Edit->Convert to Polygon command.

2.5.31 Edit->Round Corners

The Edit->Round Corners command rounds the corners of a rectangle or polygons.

August 30,
2023

GLADE REFERENCE MANUAL

87

Figure 60 - Round Corners

You must first select a shape to round. Inner Corner Radius sets the radius of curvature in microns of

inner corners; Outer Corner Radius sets the radius of outer corners. Number of segments per corner

sets the precision of the generated curve which is made up of segments (straight lines). Snap Grid

sets the manufacturing snap grid to avoid off-grid vertices; if no snapping is required set the value to

the user database resolution (usually 0.001um). If Delete Original Shape? is checked (the default),

the original shape is deleted.

2.5.32 Edit->Add Vertex

The Edit->Add Vertex command adds a vertex to a selected path or polygon at the point given by

the cursor. The vertex that has been added is selected, so it can be moved using the Edit->Stretch

command.

2.5.33 Edit->Rotate

The Edit->Rotate command rotates the current selected set about a point, which the user is

prompted to enter.

Figure 61 - Rotate

Mirror in X mirrors the objects about the X axis, Mirror in Y mirrors the objects about the Y axis.

Rotate CCW rotates the objects counter clockwise. Rotate (instances and shapes) rotates instances

according to the transform selected. Rotate by angle rotates shapes by any angle from -360.0 to

+360.0 degrees; a positive angle corresponds to a clockwise rotation. Only shapes can be rotated by

any angle; rectangles and squares get converted to polygons and are then rotated, while paths and

polygons are maintained and their vertices are rotated.

Instance placement orientation can be changed by querying the instance's properties and changing

the orientation.

August 30,
2023

GLADE REFERENCE MANUAL

88

2.5.34 Edit->Move Origin

The Edit->Move Origin command moves the origin of the current cell. Click on the point that you

want to make the new origin, and all object coordinates in the current cell will be changed to make

this point (0, 0).

2.5.35 Edit->Convert to Polygon

The Edit->Convert to Polygon command converts selected shapes into polygons. This command is

useful in conjunction with the Edit->Reshape command above.

2.5.36 Edit->Boolean Operations...

The Edit->Boolean Operations… command performs boolean operations on layers.

Figure 62 - Boolean Operations

Layer1 and Layer2 are input layers, and Output Layer is the output layer. By default layer data is

processed from the current open cellView, however it is possible to set the library/cell/view names

of the cells containing Layer1 data and Layer2 data. Operations that can be performed are two layer

AND, two layer OR, single layer OR (merge), single layer NOT, two layer NOT, two layer XOR, sizing

and up/down sizing (first size up by a given amount, then size down by the same amount - useful for

removing small gaps or notches) and selection (select all shapes on a layer that touch shapes on

another layer). Mode allows either Selected Shapes on Layer1 and, if used, Layer2 to be processed

only, else All Shapes for the layer(s) will be processed. If Output data as trapezoids is checked, the

resulting layer is converted into trapezoids rather than complex polygons. If Hierarchical is checked,

the design hierarchy is flattened and all shapes on the layer(s) are processed; else just shapes in

the top level cellView are processed. The Output CellView is the destination for the generated data.

By default this is set to the current cellView, but can be any cellView; if the cellView does not exist it

will be created. If Size Output Layer is checked, the output layer can be also sized by an amount

(except for the operation Size lyr1).

August 30,
2023

GLADE REFERENCE MANUAL

89

2.5.37 Edit->Tiled Boolean Operations...

The Edit->Tile Boolean Operations… command performs boolean operations on layers. It is useful

when the data is too large to process with Edit->Boolean Operations... as it uses a tiling algorithm to

process the data tile by tile.

Figure 63 - Tiled Boolean Operations

Layer1 data and Layer2 data specify the input layer sources. The cellView for each layer defaults to

the current displayed cellView, but can be changed e.g. to compare two cells using an XOR operation

on the same layer, for example. Operation specifies the boolean operation to be performed.

Currently only merge (single layer OR), OR, AND, ANDNOT, NOT, XOR and SIZE operations are

supported. The Output CellView specifies the cellView that output shapes will be created on,

according to the output layer specified.

If Hierarchical is checked, the cellView's data is flattened before the operation.

Tile size can be determined automatically if Tiling Mode is set to Auto. Else the tile width and height

can be specified if Tiling Mode is set to Manual. The larger the tile size, the more physical memory

will be used. For large designs with many levels of hierarchy, computing the best tile size can take a

long time - so in this case manually setting the tile sizes is preferable. Typically a starting point of

500-1000um should be acceptable. Setting smaller tile sizes will use less memory, but may run

longer.

Multithreaded specifies that the tiles are split and run on a multiple number of threads, which may

speed up overall runtime at the expense of somewhat more memory usage. # threads defaults to

the maximum number of threads that are feasible on your system. For example, a 4

core hyperthreaded Intel i7 processor will support 8 threads. Speed improvement is not linear with

August 30,
2023

GLADE REFERENCE MANUAL

90

the number of threads due to IO and memory bottlenecks. Typically with 4 threads, about 3.5x

speed improvement is gained.

2.5.38 Edit->Merge Selected

The Edit->Merge Selected command merges all selected shapes into polygons. Layers are preserved,

i.e. only shapes on the same layer are merged. If you want to merge shapes on different layers, use

the Edit->Boolean Operations... command with operation Layer1 OR layer2.

2.5.39 Edit->Chop

The Edit->Chop command chops a rectangle out of a selected shape.

Figure 64 - Chop

First, select a shape. Then invoke the chop command and draw a chop rectangle. The shape will have

the rectangle chopped out of it. If Convert paths to polygons is checked, paths will be converted to

polygons before the chop takes place. Otherwise paths will be maintained and will be cut. If Keep

chopped shapes is checked, the chop shapes from polygons are not deleted.

2.5.40 Edit->Align

The Edit->Align command aligns objects and optionally spaces them in the direction perpendicular

to the alignment edge. Unlike other commands, the Edit->Align command does not require you to

select any objects before invoking the command (which just displays the dialog); you use the Set

Reference Object to align to button to pick the alignment target, then other objects to align to that

target.

Figure 65 - Align

August 30,
2023

GLADE REFERENCE MANUAL

91

Alignment Direction is used when Align Using is set to Object Origin and can be Horizontal or

Vertical. Horizontal will align objects horizontally e.g. by their left edges, and Vertical will align them

vertically e.g. by their bottom edges. Align Using can be by Object Origin, Object bBox or Layer bBox.

Object Origin aligns according to the origin of an instance or array or the lower left of the bounding

box of shapes. Figure 66 shows object alignment using Horizontal Alignment Direction.

Figure 66 - Before and after horizontal align

Object bBox aligns according to the two object's bounding boxes, and ignores the Alignment

Direction. When selected, Object bBox alignment will enable the Alignment Reference choices over

which edge of the bounding box will be aligned. For example selecting Top will align the top edges of

the objects; Centre will align the objects so they are centred on each other, and so on.

Layer bBox alignment is only applicable when aligning instances, and will align them according to a

common layer in the instance, as given by the layer chooser.

Spacing Type controls object spacing during alignment. Any spacing is applied perpendicular to the

Alignment Direction. It can be set to either None, Space or Pitch.

None sets object spacing to zero. For example if objects are aligned according to their origin

horizontally, their position in the Y direction remains unchanged.

Space aligns objects so that the space between the reference object edge and the first object edge,

the first object edge and the second object edge and so on is equal to the space value set. For Object

August 30,
2023

GLADE REFERENCE MANUAL

92

bBox / Layer bBox alignment, spacing is only valid for left/right/top/bottom alignment reference.

Figure 67 shows the effect of aligning objects using Horizontal alignment, with Spacing Type set to

Spacing, and value 0.1um.

Figure 67 - Alignment with spacing

Pitch aligns objects so that the pitch between the reference object and the first object, the first

object and the second object and so on is equal to the pitch value set. For Object bBox / Layer bBox

alignment, pitch is only valid for left/right/top/bottom alignment reference.

To perform alignment, left click on Set Reference Object to align to. Then left click on the objects you

wish to align, one at a time. OK or Cancel the dialog to finish an alignment sequence. Click again on

Set Reference Object to align to to start a new alignment sequence.

Note: Be sure to Cancel or OK the Align command before carrying out any other command.

2.5.41 Edit-> Scale

The Edit->Scale command scales all objects in the current cellView by a simple linear scale factor.

August 30,
2023

GLADE REFERENCE MANUAL

93

Figure 68 - Scale

Scale By sets the scaling factor; all coordinates are multiplied by this factor. If Scale all cells? is

checked, all cells in the library will be scaled. Coordinates are snapped to the Snap Grid.

2.5.42 Edit->Bias

The Edit->Bias command biases shapes.

Figure 69 – Bias

Bias can be either Bias by Layer, which biases all shapes on the specified Layer to bias, or Bias

Selected (selected shapes can be on any layer). Bias by sets the bias. A positive bias causes shapes to

grow in size; a negative bias causes them to shrink.

If Bias all cells? is checked, all cells in the library will have the bias applied. Coordinates are snapped

to the X Snap Grid and Y Snap Grid. Note that polygons with collinear or coincident points will not be

biased correctly and a warning will be given.

2.5.43 Edit->Set Net

The Edit->Set Net command sets a selected shape’s net.

Figure 70 - Set Net

The Net Name combo box is filled with any existing net names in the cellView, or you can type in a

net name to create that net. If Set As Pin? is checked, the shape(s) will become pin shapes.

August 30,
2023

GLADE REFERENCE MANUAL

94

2.5.44 Edit->Create Pins From Labels

The Edit->Create Pins From Labels command creates pin shapes from text labels.

Figure 71 - Create Pins From Labels

All valid label layers are shown in the dialog. The first layer box shows the label layer. The second

layer chooser allows control of the layer that pins will be generated on. Pins are created as

rectangles centred on the label origin with the specified Width and Height. Pins are only created if

the Use? option is checked.

2.5.45 Edit->Hierarchy->Ascend

The Edit->Hierarchy->Ascend command ascends one level of hierarchy, assuming you have

previously descended into a cellView’s hierarchy.

2.5.46 Edit->Hierarchy->Descend

The Edit->Hierarchy->Descend command descends into the selected instance or tries to find an

instance under the cursor to descend into if nothing is selected.

Figure 72 - Hierarchy Descend

View is the view of the instance to descend into; for example a schematic instance may have both a

symbol view and a schematic (lower level of hierarchy) view. Open In controls the window used to

display the cellView; Current Window uses the existing window, and the Edit->Hierarchy->Ascend

command can be used to return to the previous cellView in the hierarchy. New Window opens a new

window for the cellView, leaving the previous cellView window open.

2.5.47 Edit->Hierarchy->Create

The Edit->Hierarchy->Create command creates a new cell from the selected set.

August 30,
2023

GLADE REFERENCE MANUAL

95

Figure 73 - Create Hierarchy

Library, Cell Name and View Name specify the new cellView to be created. By default the selected

objects are deleted from the current cellView, and an instance of the new cellView is placed in the

current cellView to replace them. If Replace? is checked, then the selected objects are deleted.

2.5.48 Edit->Hierarchy->Flatten

The Edit->Hierarchy->Flatten command flattens the current selected instances into the current

cellView.

Figure 74 - Flatten Hierarchy

Flatten level controls the flattening process; with Full checked the complete hierarchy from the

current level down to leaf cells is flattened. If This Level is checked, then only instances at the

current level of hierarchy are flattened; lower levels of the hierarchy are preserved.

2.5.49 Edit->Group->Add To Group

The Edit->Group->Add To Group command adds objects to an existing group. Add To Group

prompts the user to select a group to add to, or uses an existing selected group. Then the user is

prompted to select objects to add to the group. As objects are added, the group bounding box shape

is modified to enclose the objects.

To create a group, use the Create->Group… command.

2.5.50 Edit->Group->Remove From Group

The Edit->Group->Remove From Group command removes objects from a group. The group must

be editable in transparent mode; use the View->Display Options dialog to set groups to transparent

mode. Remove From Group prompts the user to selct objects, and removes them from the group.

The group shape bounding box is adjusted to enclose the remaining shapes.

2.5.51 Edit->Group->Ungroup

The Edit->Group->Ungroup command ungroups objects. The Ungroup command prompts the user

to select a group to ungroup, or uses an existing selected group.

August 30,
2023

GLADE REFERENCE MANUAL

96

2.5.52 Edit->Edit in place->Edit in place

The Edit->Edit In Place->Edit In Place command allows editing a cell in place.

First select an instance that you want to edit. The Edit in place command will cause all subsequent

selection and editing will be done in the master cell for that instance, but with the original top level

cell displayed. The edit in place cell will be shown with layers of normal intensity, whereas all other

shapes (of non-editable cells) will be shown dimmed, according to the dimming value set in the

Selection Options dialog.

Edit in place is hierarchical, i.e. you can choose to edit in place a cell within another cell you are

currently editing in place.

2.5.53 Edit->Edit in place->Return

The Edit->Edit In Place->Return command returns to the parent cell of the current edit in place cell.

2.5.54 Edit->Select->Inst by name

The Edit->Select->Inst By Name command Displays allows selection of instances based on their

instance name.

Figure 75 - Select Inst By Name

2.5.55 Edit->Select->Net by Name

The Edit->Select->Net By Name command allows selection of nets based on their name.

Figure 76 - Select Net By Name

2.5.56 Edit->Select->Select All

The Edit->Select->Select All command selects all currently selectable objects.

2.5.57 Edit->Select->Deselect All

The Edit->Select->Deselect All command deselects all the selected set.

2.5.58 Edit->Find/Replace

The Edit->Find command displays the Find/Replace dialog.

August 30,
2023

GLADE REFERENCE MANUAL

97

Figure 77 - Find

Find searches for objects, either in the current cellView, or hierarchically from the current cellView

down, and optionally can replace them, or their attributes and/or properties. Names can be

matched by Wildcards (e.g. VDD* matches VDD1, VDD2, VDD) or by RegExp (regular expressions).

Currently you can search for instances, nets, shapes, ellipses/circles, labels, MPPs, paths, polygons,

rectangles and viaInsts.

For each object type you can add a criteria. For example instances can have cell name, lib name, inst

name, view name, orientation and properties as the criteria to match them. You can have one or

more criteria, and match All criteria (i.e. the AND of each) or Any criteria (i.e. the OR of each).

Objects that match the search criteria can be added to the selected set or highlighted according to

the Find Action. If Find Action is Select, objects will be selected, and further control is given by Select

Action. New Selection clears any existing selected objects. Add to Selection adds the found selected

ites to the selected set. Remove from Selection removes found objects from the selected set.

In the case of highlighted nets, they can be displayed either as the actual net shapes highlighted if

Highlight Shapes is checked, or by a Spanning Tree between the instance pins of the instances the

net connects to, or as a Steiner tree. This is useful, for example, in highlighting the connectivity of

unrouted nets; the spanning tree is a good approximation to the path an autorouter will take; the

Steiner tree is even better although can be slow on nets with many pins. The highlight colour can be

chosen using the Highlight Colour button; the Highlight Fill can be Solid or Hollow and the linewidth

August 30,
2023

GLADE REFERENCE MANUAL

98

can be specified for hollow fills. Optionally the display can Zoom to Selected object(s) and it is

possible to clear all highlighted objects using the Clear Highlighted button.

Once objects have been found (by clicking on the Find button), then it is possible to replace them.

The Replace combo box shows the possible replacements depending on the object searched for. For

example you can replace the layer of a shape, or the property of an object.

Note that it is not currently possible to undo the actions of the Replace command. Be sure to save

first!

2.5.59 Edit->Properties->Query Object

The Edit->Properties->Query Object command queries the selected object.

Figure 78 - Query Object

With nothing selected, the current cell's properties are queried. Otherwise you may query any

selected object's properties and attributes, and cycle through the selected set using the Previous and

Next buttons. You can delete a queried object using the Delete button. You can remove an object

from the selected set with the Unselect button. If multiple objects are selected, Change all selected

objects allows their common attributes to be changed. For example, if shapes are selected then the

layer may be changed for all shapes. If the object has connectivity, a Net properties tab is added to

the dialog. All objects may have user or system-defined properties which can be manipulated on the

Properties tab page.

August 30,
2023

GLADE REFERENCE MANUAL

99

Figure 79 - Query Object Properties

Properties can be added as string, float, integer, boolean, list or orient. Click on the property name

or value to change the text, or click on the type and select the type in the combo box that will

appear. Click on the '+' button to add a (initially blank) property entry, or select a property and click

on the '-' button to delete the property.

There is currently no undo capability if you delete a property.

2.5.60 Edit->Properties->Query CellView

The Edit->Properties->Query CellView command displays the Query dialog for the current cellView.

Figure 80 - Query CellView

August 30,
2023

GLADE REFERENCE MANUAL

100

2.5.61 Edit->Bindkeys

The Edit->Bindkeys command displays the Edit Bindkeys dialog.

Figure 81 - Edit Bindkeys

All menus and toolbar buttons have actions. An action has a unique command associated with it; it

also has an optional bindkey. For example the 'Open Cell' action by default has a bindkey Ctrl+O.

Bindkeys may be redefined by the user using the Edit Bindkeys command. This shows a table of all

current bindkey assignments.

Clicking on the Bindkey entry in the table allows editing the bindkey for that Action. A single letter in

uppercase indicates that key will be used. Modifier keys may be specified e.g. Shift+, Ctrl+, Alt+ and

should precede the key, with no spaces.

Bindkeys are saved in the preferences file (~/.gladerc) and are loaded automatically every time

Glade is run. A local .gladerc file will override values specified in the global ~/.gladerc file, so you

have a project-specific subset of settings.

2.5.62 Create Menu

Create commands for shapes (text, paths, polygons and rectangles) all work on the current layer as

set in the LSW by left mouse clicking on the layer box. All the create commands pop up a dialog box

which can be shown or hidden by pressing the F3 bindkey. Create commands can be terminated by

hitting the Escape bindkey. Zooming and panning is possible during Create commands.

August 30,
2023

GLADE REFERENCE MANUAL

101

2.5.63 Create->Inst...

The Create->Inst command creates an instance or array in the current cell.

Figure 82 - Create Inst attributes

An instance is entered using a single left mouse click, which defines the origin of the instance. The

instance master cell can be chosen from those present in the library using the cellName combo box

and the viewName combo box. The instance's InstName is auto generated but can be changed by

the user if required in the instName field. Orientation can be one of R0, R90, R180, R270, MX,

MXR90, MY, MYR90. Arrays of instances can be generated if Num Rows and/or Num Cols is not 1;

the spacing between rows and columns is set by Row Spacing and Column Spacing, unless Set

Row/Col spacing interactively is checked. In that case, if Num Rows is greater than 1, the user is

prompted for the location of the first instance of the second row (setting the rowSpacing), and if

Num Cols is greater than 1, the user is prompted for the location of the first instance of the second

column (setting the colSpacing). The instance bounding box is displayed during the command to

assist in placement of the instance. Rotate (or the bindkey ‘r’ during instance placement) rotates the

instance counter clockwise. Mirror Y (or the ‘y’ bindkey during instance placement) mirrors the

instance about the Y axis. Mirror X (or the ‘x’ bindkey during instance placement) mirrors the

instance about the X axis.

August 30,
2023

GLADE REFERENCE MANUAL

102

Figure 83 - Create Inst properties

The Instance Properties tab can be used to set properties on the instance, e.g. if the master cell is a

PCell or a symbol. The '+' button adds a new property row. The Property Name column allows the

property name to be edited. Clicking on the Property Type will display a combo box with the possible

property types, e.g. string, integer, float etc. The Property Value column contains the property

values.

2.5.64 Create->Rectangle

The Create->Rectangle command creates a rectangle in the current cell on the current layer. A

rectangle is entered using two left mouse clicks, or a single click if Infix Mode is set. The first point

(or the current cursor position if Infix mode is set) defines a vertex of the rectangle. A rubber band

box is drawn showing the extent of the rectangle during mouse movement. Clicking on the second

point completes the rectangle.

2.5.65 Create->Polygon

The Create->Polygon… command creates a polygon in the current cell on the current layer.

Figure 84 - Create Polygon

A polygon is entered using multiple left mouse clicks, with each click defining a vertex of the

polygon. The polygon entry Snap Angle can be one of Manhattan, Diagonal or Any Angle. After two

points have been entered, a dotted blue 'closure line' is shown. Hitting return while the closure line

is displayed completes the polygon according to the closure line. Polygons can also be finished by

double clicking on a point. Pressing the backspace key backs up the polygon by one vertex i.e.

deletes the last point.

August 30,
2023

GLADE REFERENCE MANUAL

103

2.5.66 Create->Path...

The Create->Path… command creates a path in the current cell on the current layer.

Figure 85 - Create Path

A path is entered using multiple left mouse clicks, with each click defining a path point. The path

entry Snap Angle can be one of HV, VH, Any, 90, 45, Any, Horiz, Vert or Route. HV will create a path

with horizontal segment first, then vertical. VH will create a path with vertical segment first, then

horizontal. 90 restricts entry to Manhattan, 45 to diagonal, and Any to all angles. Horiz and Vert

restrict paths to horizontal and vertical segments only. Route will use an autorouter, which will route

according to the routing pitch (if set in the techfile) or the X/Y snap grid if not set. The autorouter

will avoid shapes if they have a techfile FUNCTION of BLOCKAGE, existing wiring on the same layer or

pin shapes that are not on the same net as the path.

The path width can be manually set in the Width field, and the path Style can be set to one of

Truncate, Round, Extend, VarExtend or Octagonal. In the case of Extend, the path extent is set to

half the path width. In the case of VarExtend, independent beginning and ending extensions can be

set. Path entry is terminated by hitting the return key, or by double clicking on the final point

required. Pressing the backspace key backs up the path by one vertex i.e. deletes the last entered

point.

If the layer is a routing layer (has its FUNCTION set in the techFile to ROUTING) then the 'u' and 'd'

keys can be used to switch up or down to the next routing layer during path entry. A via will be

placed if a valid via between the two layers exists. If an existing pin or net shape is selected, the Path

Net and layer are pre-set based on the net shape, and the Width field is set to that layer's minimum

width or the pin width. Note that if a via is entered during path entry, the previous path segment(s)

are committed, so pressing the Esc key to interrupt the path command terminates it, preserving the

already entered path segments. This is useful if you want to route one path to connect with another

on an adjacent layer.

August 30,
2023

GLADE REFERENCE MANUAL

104

If the first or last point of a path is entered inside a pin (e.g a std cell pin or PCell pin) then the path

point is snapped to the centre of the pin.This can considerably speed up wiring of layout generated

by the schematic Layout->Create Layout command.

Shield sides, if checked, results in shield paths generated to the sides of the entered path, in the

same layer as the path. The width of the side shield paths is set by Side Width and the spacing from

the shield to the path is set by Side Spacing. Shield top/bottom, if checked, results in shield paths on

top of and below the entered path, with the bottom shield on the next routing layer below the path,

and the top shield on the next routing layer above the path. The routing order is as set in the

techFile by the layer FUNCTION statements - the first layer with a FUNCTION of ROUTING is the

lowest layer. The widths of the top and bottom shields are set by Top/Bottom Width. If Shield Net is

set then the shields will be assigned to the net name specified; if it does not exist it will be created.

2.5.67 Create->Label...

The Create->Label… command creates a label in the current cell.

Figure 86 - Create Label

The label is created on the current layer with name given by the Label Text field. A label is entered

using a single left mouse click, which defines the label's origin. Height defines the label's height, with

a height of 1 being 1000 dbu (usually 1um) high. Presentation is the position of the origin relative to

the text and can be one of topLeft, topCentre, topRight, centreLeft, centreCentre, centreRight,

bottomLeft, bottomCentre or bottomRight. Orient can be one of R0, R90, R180, R270, MX, MXR90,

MY, MYR90. Label Use sets the use of the label; for layout and schematic views this should be

'normal label'. For symbols, choosing a different use sets the layer the label is created on. Label Type

sets the label type. A normal type label displays its label text as is. A NLPLabel label has the label text

evaluated as an NLP expression. A pyLabel has its text evaluated as a Python expression.

2.5.68 Create->MultPartPath...

The Create->MultiPartPath… command creates a Multi Part Path (MPP).

August 30,
2023

GLADE REFERENCE MANUAL

105

Figure 87 - Create MPP

The MPP is created according to a MPP Rule Name. Optionally a MPP may be assigned a Net Name.

Currently MPP paths must be Manhattan only. MPPs when exported to GDS / OASIS etc. are

converted to polygons i.e. they are flattened.

A MPP is defined in the techFile e.g. as below:

//
// MultiPartPath rules
//
MPP nguard LAYER nwell drawing WIDTH 1.80 BEGEXT 0.90 ENDEXT 0.9 ;
MPP nguard LAYER od drawing WIDTH 1.18 BEGEXT 0.59 ENDEXT 0.59 ;
MPP nguard LAYER nimp drawing WIDTH 1.54 BEGEXT 0.77 ENDEXT 0.77 ;
MPP nguard LAYER cont drawing WIDTH 0.16 BEGEXT -0.08 ENDEXT 0.08 SPACE 0.18
LENGTH 0.16 ;
MPP nguard LAYER metal1 drawing WIDTH 0.60 BEGEXT 0.30 ENDEXT 0.30 ;

A MPP is like a path in that it is defined as a set of vertices. A MPP may contain several layers. Each

layer must have a nonzero WIDTH and a BEGEXT and ENDEXT which may be negative, positive or

zero. The layer is justified to the segments of connected vertices i.e. it extends a half width either

side of the path. The BEGEXT is the distance past the first vertex of the path that the layer starts, the

ENDEXT is the distance past the last vertex of the path that the layer stops. If the layer has a SPACE

and a LENGTH then it is assumed to be a repetitive contact structure, i.e. rectangles with WIDTH and

LENGTH separated by SPACE are generated.

2.5.69 Create->Pin...

The Create->Pin… command creates a pin in the current cell.

August 30,
2023

GLADE REFERENCE MANUAL

106

Figure 88 - Create Pin

Pin Name is the name of the pin, Net Name is the name of the net that the pin belongs to. If the net

does not exist it will be created. If an existing net shape is selected, Net Name is seeded with the

selected net's name. Use determines the pin's type. Direction sets the pin's direction. The pin is

created on the Layer selected by the layer chooser field.

2.5.70 Create->Via...

The Create->Via… command creates a via in the current cell.

Figure 89 - Create Via

Via Name is the name of an existing via in the library. Net Name is the name of the net that this via is

assigned to.

2.5.71 Create->Circle...

The Create->Circle… command creates a circle in the current cell on the current layer.

Figure 90 - Create Circle

Circles are entered using two left mouse clicks, or a single click if Infix mode is set. The first point (or

the current cursor position if Infix mode is set) defines the centre of the circle, and the second point

is a point on the circumference of the circle. Radius snap grid is the snap grid (usually the

manufacturing grid) to snap the circle's radius to. Number of segments is the number of line

segments used to represent the circle on export to GDS2 or OASIS.

August 30,
2023

GLADE REFERENCE MANUAL

107

2.5.72 Create->Ellipse...

The Create->Ellipse… command creates an ellipse in the current cell on the current layer.

Figure 91 - Create Ellipse

Ellipses are entered using two left mouse clicks, or a single click if Infix mode is set. The first point (or

the current cursor position if Infix mode is set) defines one corner of the ellipse's bounding box, and

the second point defines the opposite corner of the ellipse's bounding box. Radius snap grid is the

snap grid (usually the manufacturing grid) to snap the ellipse's bounding box to. Number of segments

is the number of line segments used to represent the circle on export to GDS2 or OASIS.

2.5.73 Create->Arc...

The Create->Arc command creates an arc in the current cell on the current layer. Arcs are entered

using three left mouse clicks, or two clicks if Infix mode is set. The first click defines the centre of a

circle that has the required arc on its circumference. The second click defines the radius of that

circle, and the first point of the arc. The third click defines the span angle from the first point. The

arc will be drawn clockwise or anticlockwise depending on the start angle and the stop angle. Note

that arcs cannot be output to e.g. GDS2 or OASIS as they are line objects. They are intended for use

with the symbol editor only.

2.5.74 Create->Group...

The Create->Group… command creates a group of objects in the current cell.

A group is a database object, and can contain shapes, instances or other groups. If a group is moved,

all the objects within the group are moved. Similarly if a group is copied or rotated, all the objects in

the group are copied or rotated. Groups behave like pseudo instances, but without any physical

hierarchy.

To create a group, either preselect objects; Create Group will create a group with name given by

Name, and add the selected objects to the group. Or, if nothing is selected, the user is prompted to

select objects to add to the group. Cancel or pressing ESC will cancel selecting objects to add. The

group orientation is set by Orientation, and can subsequently be changed by selecting and querying

the group.

August 30,
2023

GLADE REFERENCE MANUAL

108

Note that groups can contain other groups; a group cannot have itself as a member to avoid infinite

recursion.

Groups are displayed as a rectangular shape on the group system layer, which is set to the bounding

box of all the objects in the group. If the group's shape is selected it can be moved or copied.

To subsequently add or remove objects from a group, use the Edit->Group->Add To Group or Edit-

>Group->Remove From Group commands.

To ungroup objects, use the Edit->Group->Ungroup command.

Groups can be transparent, in which case the group shape is not selectable but the objects in the

group are, and can be moved independently. Transparency is set in the View->Display Options

dialog. If transparency is disabled then individual group members are not selectable, only the group

shape is.

2.5.75 Verify Menu

2.5.76 Verify->Check...

The Verify->Check… command displays the Check dialog.

Figure 92 - Verify Check

Width and spacing error checks can be performed if e.g. layer minWidth and minSpace properties

have been set in the techFile or via loading LEF.

2.5.77 Verify->Check Offgrid...

The Verify->Check Offgrid… command displays the Check Offgrid dialog.

Figure 93 - Check Offgrid

If Non-Manhattan is checked, it will check and select any paths or polygons that contain non-

Manhattan edges. If Shapes is checked, it will check if any shape vertices are not on the specified

August 30,
2023

GLADE REFERENCE MANUAL

109

Manufacturing grid. If Instances is checked, it will check if instance origins are on grid, and in the

case of arrays that the rowSpacing and colSpacing values are an integer multiple of the

manufacturing grid. The command works on the top level cell only currently.

2.5.78 Verify->DRC->Run...

The Verify->DRC->Run… command displays the Run DRC dialog.

Figure 94 - Run DRC

DRC rules file specifies a python rules file to run. Any existing DRC violation markers are erased. If an

environment variable GLADE_DRC_FILE is set, the DRC rules file will be set to the value of

GLADE_DRC_FILE (which must be a full path name). DRC file variables can be set using the DRC

file variables entry; both the name and value are passed to Python as strings. Options should be in

the form of name=value, separated by a space. If an environment variable GLADE_DRC_VARS is set,

the variables will be set to the value of this env var.

2.5.79 Verify->DRC->View Errors...

The Verify->DRC->View Errors… command shows the DRC error marker dialog.

Figure 95 - View DRC errors

Click on a rule violation in the left hand list box to select the type of violation you wish to view. The

first violation marker will be selected and zoomed in on. Subsequently you can use the Next and Prev

buttons to step through the list of violation markers, zooming in on each new marker. The Delete

Marker button will delete the currently viewed error marker. Viewed is the number of violations

viewed so far; Remaining is the total number of violations remaining (the starting number less the

number deleted using Delete Marker).

The current DRC marker is highlighted, and other shapes can be dimmed if the Selection Options

Dim highlighted shapes option is set.

August 30,
2023

GLADE REFERENCE MANUAL

110

2.5.80 Verify->DRC->Clear Errors

The Verify->DRC->Clear command clears all errors on the drcMarker layer.

2.5.81 Verify->Extract->Run...

The Verify->Extract->Run… command displays the Run Extraction dialog.

Figure 96 - Run Extraction

Extraction rules file specifies a python rules file to run. If an environment variable GLADE_EXT_FILE is

set, the extraction rules file will be set to the value of GLADE_EXT_FILE (which must be a full path

name). Extraction file variables can be set using the Extraction file options entry. Options should be

in the form of name=value, separated by a space; both the name and value are passed to Python as

strings. Multithreaded if checked runs connectivity analysis in the number of threads specified in

Max number of threads, which defaults to the maximum number of logical cores the machine can

use. If an environment variable GLADE_EXT_VARS is set, the variables will be set to the value of this

env var.

2.5.82 Verify->LVS->Run...

The Verify->LVS->Run… command displays the Run LVS dialog. Glade uses Gemini for LVS, which is

run with netlists generated from the extracted view and schematic view or netlist.

August 30,
2023

GLADE REFERENCE MANUAL

111

Figure 97 - Run LVS

Extracted View specifies the name of an existing extracted view in the Library/CellName/ViewName

fields and is pre-set to the current cellView. Schematic Source can be either schematic or netlist.

If Schematic Source is Netlist, specify the name of the schematic netlist in the CDL Netlist field. This

can be pre-set via an environment variable GLADE_NETLIST_FILE.

If Hierarchical netlist? is checked, then a hierarchical netlist will be flattened before passing to the

LVS engine. Delimiter character specifies the delimiter between hierarchical names of nets and

instances. Top Cell Name must be specified for a hierarchical netlist; it is the top level .subckt name

that corresponds to the design to be verified.

If Schematic Source is Schematic, specify the Library/CellName/ViewName for the schematic, and the

SwitchList and StopList for netlisting.

Switch List and Stop List set the switch and stop lists for the netlister during hierarchical netlisting,

and are space-delimited lists of view names. Switch and stop lists are named in SwitchList Name. To

create a new name group, edit the SwitchList Name and set the Switch List and Stop List. The new

named group will be saved in the gladerc.xml preferences file.

August 30,
2023

GLADE REFERENCE MANUAL

112

Global Nets specifies global nets for the CDL netlist file.

The netlister property name can be set in the Netlisting property name field. It is a space-delimited

list of names of the property to be used for netlisting; the first found is used, else the property name

'NLPDeviceFormat' is used.

Working Directory specifies a directory where temporary files are written. The extracted view is

netlisted to a CDL file which is compared to the specified schematic netlist. Match info and/or

discrepancies are written to the log file.

Figure 98 - Run LVS Options

The Gemini Options tab allows specification of Gemini options.

Do not reduce different sized series transistors - Normally series MOS devices are merged; checking

this option prevents the merge if they have different L/W.

Do not reduce parallel MOS - Parallel (or multi-fingered) MOS devices with the same S/D/G/B nets

are normally collapsed into a single device whose width is the sum of the individual widths; checking

this option prevents merging.

Do not reduce series MOS - This option prevents series MOS devices from being merged.

August 30,
2023

GLADE REFERENCE MANUAL

113

Warn for out-of-order series MOS - If series merged transistors match, but have different gate net

order, then a warning will be issued.

Do not reduce series RLC – This option prevents series R, L or C devices from being reduced into a

single device. In the case of series R and L, their values are summed for the reduced device. In the

case of series C, the reciprocals are summed.

Do not reduce parallel RLC – This option prevents parallel R, L or C devices from being reduced into a

single device. In the case of parallel R or L, the reciprocals of their values are summed. In the case of

C, their values are summed.

Case insensitive net names - Normally net names are case sensitive i.e. clk and Clk are different nets;

checking this option treat them as the same net.

Do not use local matching - this option stops Gemini from using the local matching algorithm to

speed up checking. It is normally never required.

Match using properties - Gemini does not consider device properties (e.g. W, L) when matching

devices. Checking this option can resolve some symmetric circuits which have different device

properties. The Device Parameter Tolerance option must also be checked.

Use subckt ports as equivalent nodes - Gemini defaults to matching netlists without any initial

equivalence points. If checked, then if both netlists have .subckt/.ends lines, the port names in the

.subckt line will be used for equivalence. Errors will be generated if the number of ports is different,

or if the port names do not match. This option can resolve some symmetric circuits where the

difference is with the port names.

Do not optimise node labelling - Gemini will try and optimise node labelling to assist matches. This

option is normally never required.

Warn for nets with zero connections - Gemini will report an error for nets with no connections. Not

very useful.

Verbose mode - Gemini will generate extra information in the message window while running.

Error limit - Sets the allowed number of errors. The default is zero.

Net error size limit - Gemini will report this number of devices connected to unmatched nets.

Typically if e.g. power/ground nets mismatch, a lot of errors can be generated. The default limit is to

report 10.

No progress limit - Sets the iteration limit if no progress is made relabelling nodes to try and find a

match.

Suspect node limit - Sets the limit of suspect nodes allowed.

Device parameter tolerance - if checked, device properties e.g. W/L, R, C, L are checked according to

the specified tolerance, else properties are not checked.

August 30,
2023

GLADE REFERENCE MANUAL

114

Write equivalence file - Writes a file containing equivalent net names between the layout and

schematic. Each line has the format '= <name1> <name2>'.

Read equivalence file - Reads a equivalence file containing net names to be considered as initially

matched in the format '= <name1> <name2>. This can sometimes help with circuits with symmetry,

or many errors. Note that incorrectly specifying match names can result in wrong results.

Gemini will write mismatch information to the message window, and to the open extracted view as

error markers for nets/devices.

2.5.83 Verify->Import Hercules Errors

The Verify->Import Hercules Errors command imports a Hercules error file.

Figure 99 - Import Hercules Errors

The DRC error viewer can then be used to step through the errors.

2.5.84 Verify->Import Calibre Errors

The Verify->Import Calibre Errors command imports a Calibre error file.

Figure 100 - Import Calibre Errors

The DRC error viewer can then be used to step through the errors. Both flat and hierarchical Calibre

error files are supported.

2.5.85 Verify->Compare Cells...

The Verify->Compare Cells… command allows comparison of layers from two different cellViews

using a multithreaded XOR operation. This can be useful for checking the changes made between

two different versions of a design.

August 30,
2023

GLADE REFERENCE MANUAL

115

Figure 101 - Compare Cells

The data to be compared is specified by the 1st CellView and 2nd CellView. They are compared by

the Compare layer using an XOR. If Hierarchical is checked, the cells are flattened for the compare,

else only shapes on the Compare layer at the top level will be compared. If All Layers is checked, all

the layers are compared, else just the Compare Layer .The results are output to the cellView

specified in the Output differences to field. Results are written to the Output layer specified - if

marker is used (the default), then differences can be viewed using the DRC->View Errors command.

Comparison is done by multithreaded tiling of the original data to handle large designs. For setting

tile sizes and multithreading options, see the Tiled Boolean Operations command.

Note: if you want to compare two cells by importing e.g. GDS2 or OASIS files, you MUST use import a

techFile for each import with the same GDS layer/datatype to layer/purpose mapping. Failing to do

this (e.g. importing two GDS2 files without importing any techFile) will most likely result in the GDS

layer/datatype of one file being assigned to a different internal layer number from that of the

second file. This is because internal layer numbers represent layer/datatype or layer/purpose pairs

as a single number, and the mapping is assigned in the order the pairs are encountered.

2.5.86 Verify->Trace Net

The Verify->Trace Net command displays the Trace Net dialog.

August 30,
2023

GLADE REFERENCE MANUAL

116

Figure 102 - Trace Net

Trace Net traces connectivity either from a start point or from a text label. To use the net tracer, the

technology file must have layers with their CONNECT attributes defined. For example:

CONNECT poly drawing BY contact drawing TO metal1 drawing ;
CONNECT metal1 drawing BY via1 drawing TO metal2 drawing ;
CONNECT metal1 drawing TO metal1 drawing ;

In the first two cases, connection of the poly layer to the metal1 layer is through a via layer. In the

second case, the two layers connect without any via layer.

To use the net tracer to trace from a shape, click on the Trace from point - Start Trace button.

Tracing will continue until no more connecting shapes are found. Tracing may be aborted by clicking

on the red abort button next to the progress bar on the status bar.

To use the net tracer to trace from a text label, set the Label Layer and the Attach Layer (which can

be the same layer). Enter the Label Name and click on Trace from label - Start Trace. Note that

currently, only labels on the top level of the cellView hierarchy can be traced from.

Mode selects whether traced shapes are highlighted (the default), selected or saved to a specified

cell given by libName / cellName / viewName. Only shapes on the top level (currently displayed)

cellView can be selected, but shapes from all levels of hierarchy can be saved and/or highlighted.

August 30,
2023

GLADE REFERENCE MANUAL

117

If the checkbox Add connectivity to traced shapes is set, then a net with the name given by Net

Name will be created f it does not already exist, and all traced shapes will be assigned to that net. NB

entering a Label Name for tracing from a text label will automatically set the Net Name field.

Clicking on Highlight Colour will alllow changing the highlight colour. Clear highlight clears all

highlighted shapes. Using the selection options dialog to dim unhilited objects can make the trace

result clearer.

2.5.87 Verify->Set Layer Stack

The Verify->Set Layer Stack command displays the layer connectivity used for the Trace Net

command (and also settable in the techFile as described above, or set during import of LEF/DEF).

Figure 103 - Set Layer Stack

The dialog displays lower conducting layers, optional contact layers and upper conduction layers. So

in the above dialog, poly connects to cont which connects to metal2. metal2 connects to metal, and

metal also connects to metal3.

To edit a layer, double click on it and the icon will change to a combo box as shown in the second

column, third row of the dialog above. You can set the layer to any layer including a special layer

'NONE' which when used for the contact layer means there is no explicit contact layer between the

conducting layers.

To add a row, use the '+' buttton. To delete a row, select the row by single clicking on it, then use the

'-' button. To move a row of layers up, select a row and use the 'up' bottom. Similarly to move a row

down, select the row and use the 'down' button.

2.5.88 Verify->Short Tracer...

The Verify->Short Tracer… command displays the short tracer dialog.

Figure 104 - Short Tracer

August 30,
2023

GLADE REFERENCE MANUAL

118

The Short Tracer can be used for DEF or similar designs that have connectivity. Either Power/Ground

nets, or All Nets can be checked for touch/overlap against shapes connected to a different net. The

bounding box of the shorting region is reported, and this bounding box is written to the marker layer

so that the DRC->View Errors dialog can be used to step through the errors, zooming to each short

location. Currently only top level nets are checked against other top level nets; in other words the

check is done flat.

2.6 Schematic Menus

2.6.1 View

2.6.2 View->Fit

See Layout View menu

2.6.3 View->Fit+

See Layout View menu

2.6.4 View->Zoom In

See Layout View menu

2.6.5 View->Zoom Out

See Layout View menu

2.6.6 View->Zoom Selected

See Layout View menu

2.6.7 View->Pan

See Layout View menu

2.6.8 View->Redraw

See Layout View menu

2.6.9 View->Ruler

See Layout View menu

2.6.10 View->Delete Rulers

See Layout View menu

2.6.11 View->Cancel Redraw

See Layout View menu

2.6.12 View->Display Options

The View->Display Options command displays the Display Preferences dialog.

August 30,
2023

GLADE REFERENCE MANUAL

119

Figure 105 - Display Options (Object Settings)

Show Axes shows the X=0 and Y=0 axes.

Show Labels toggles the display of text labels. By default, text label display is turned off as in non-

OpenGL display mode, drawing text labels can be slow if there are many labels.

Display Origins - Labels shows the origin of text labels as a small cross. Display Origins - Instances

shows the origin of instances as a small cross.

Instance Names can be set to Preserve or Force Spice Compatible. With Preserve, the instance names

are kept as is. With Force Spice Compatible, the first character of the instance name will be changed

during Check to a Spice type e.g. M for MOS devices, R for resistors etc. depending on the instance

master’s type property.

Label Display allows finer control of text labels. Display Rotated Labels if checked displays text

rotated as per its database orientation. When unchecked, labels are displayed with no rotation

(horizontally).

Label display scale factor will scale the displayed labels according to the scale factor set. A different

scale factor can be used for schematics and layout.

Dot Size sets the dot size when creating solder dots, either through interactive wiring or via the

Create Solder Dot command.

August 30,
2023

GLADE REFERENCE MANUAL

120

Figure 106 - Display Options (Display Settings)

Display Grid controls the display grid which can be one of None, Dotted or Line. The display major

grid is drawn using the LSW majgrid layer; the minor grid is drawn using the LSW mingrid layer.

Display Grid Settings. The Minor grid spacing sets the dot or line spacing and are drawn using the

mingrid layer. The Major value is the number of minor grids per major grid dot or line; it should be

an integer, typically 5 or 10. The major grid is drawn using the majgrid layer.

Figure 107 - Display Options (Snap Settings)

Snap Grid controls cursor snapping. The cursor is snapped to the value specified. Snapping is

modified by gravity; see the Selection Options dialog.

Snap Angle controls the angle that data can be entered for some shape creation and also for rulers.

Any allows all angles; 45 degrees and 90 degrees snap accordingly.

August 30,
2023

GLADE REFERENCE MANUAL

121

Figure 108 - Display Options (Miscellaneous)

Infix Mode is used for commands which can take the current mouse position rather than relying on

the user to click on the first point of the command.

Repeat commands will keep repeating a command until ESC is pressed.

Display coordinates in database units shows coordinates in DB units, rather than microns. This can

be useful when working with e.g. DEF files where the ascii coordinates in the file are in DB units.

Always popup option dialogs when checked will always show option dialogs for forms such as Create

Path. These option dialogs can be shown and hidden by toggling the F3 key. If Always popup option

dialogs is not checked, then the option forms will not be shown automatically (but can still be shown

by pressing F3). This is useful when entering e.g. a lot of polygons.

Immediate move/stretch of selected objects will let selected objects be moved by the cursor without

issuing a move/select command. The cursor changes according to the object. To use, select an object

in full mode, or an edge/vertex in partial mode. The cursor will change to a 4-way arrow (for full

mode select) or a 2-way arrow (for partial mode select). Then left click and drag to move or stretch

the object. The object is deselected afterwards, so to repeat the command, select another object.

Keep immediate move selected will keep objects selected after an immediate move/stretch;

otherwise all objects will be deselected.

Zoom centred on cursor sets the centre of the zoom to the cursor position; otherwise zoom in/out is

centred on the viewport.

Auto focus sets input focus to the canvas whenever the mouse moves over it. If this option is

unchecked, then the user has to explicitly click on the main window in order to e.g. use bindkeys

after any operation that transfers focus to another window. Some Window managers may override

this operation because they provide control of focus directly.

Auto raise raises the canvas window the mouse is over automatically. If this option is not set, the

canvas must be explicitly clicked on to make it the active window for accelerator key input.

August 30,
2023

GLADE REFERENCE MANUAL

122

RMB mode sets the operation of the right mouse button. It can be set to Glade mode (dragging the

mouse down zooms in, dragging it up zooms out), Virtuoso mode (dragging the right mouse in any

direction zooms in) or Special mode (dragging the right mouse down zooms in, dragging it up left

zooms out, dragging it up right does a window fit).

2.6.13 View->Selection Options

See Layout View menu

2.6.14 View->Pan/Zoom Options...

See Layout View menu

2.6.15 Edit

2.6.16 Edit->Undo

See Layout View menu

2.6.17 Edit->Redo

See Layout View menu

2.6.18 Edit->Yank

See Layout View menu

2.6.19 Edit->Paste

See Layout View menu

2.6.20 Edit->Delete

See Layout View menu. When deleting wires, solder dots and labels associated with the wire will be

deleted.

2.6.21 Edit->Copy

See Layout View menu. Copying vector instances will also copy the vector information to the new

instance name.

2.6.22 Edit->Move

See Layout View menu

2.6.23 Edit->Move By...

See Layout View menu

2.6.24 Edit->Move Origin

See Layout View menu

2.6.25 Edit->Stretch

See Layout View menu

2.6.26 Edit->Rotate

See Layout View menu

August 30,
2023

GLADE REFERENCE MANUAL

123

2.6.27 Edit->Set Net

The Edit->Set Net command sets a selected shape’s net.

Figure 109 - Set Net

The Net Name combo box is filled with any existing net names in the cellView, or you can type in a

net name to create that net. If Set As Pin? is checked, the shape(s) will become pin shapes.

2.6.28 Edit->Ingore Instances

The Edit->Ignore Instances command toggles the nlAction property on selected instances. The

nlAction property is created and set to 'ignore' if the property does not exist. If it does exist, the

property is deleted. Instances with the nlAction property set are shown in the schematic editor with

a red cross.

The netlisters will ignore any instances with this property set, so you can have e.g. dummy devices in

the schematic that are not netlisted.

2.6.29 Edit->Hierarchy->Ascend

The Edit->Hierarchy->Ascend command ascends one level of hierarchy, assuming you have

previously descended into a cellView’s hierarchy.

2.6.30 Edit->Hierarchy->Descend

The Edit->Hierarchy->Descend command descends into the selected instanceor tries to find an

instance under the cursor to descend into if nothing is selected.

August 30,
2023

GLADE REFERENCE MANUAL

124

Figure 110 - Hierarchy Descend

View is the view of the instance to descend into; for example a schematic instance may have both a

symbol view and a schematic (lower level of hierarchy) view. Open In controls the window used to

display the cellView; Current Window uses the existing window, and the Edit->Hierarchy->Ascend

command can be used to return to the previous cellView in the hierarchy. New Window opens a new

window for the cellView, leaving the previous cellView window open.

2.6.31 Edit->Select->Inst by name

The Edit->Select->Inst By Name command Displays allows selection of instances based on their

instance name.

Figure 111 - Select Inst By Name

2.6.32 Edit->Select->Net by Name

The Edit->Select->Net By Name command allows selection of nets based on their name.

Figure 112 - Select Net By Name

2.6.33 Edit->Select->Select All

The Edit->Select->Select All command selects all currently selectable objects.

2.6.34 Edit->Select->Deselect All

The Edit->Select->Deselect All command deselects all the selected set.

2.6.35 Edit->Properties->Query Object

The Edit->Properties->Query Object command queries the selected object.

August 30,
2023

GLADE REFERENCE MANUAL

125

Figure 113 - Query Object

With nothing selected, the current cell's properties are queried. Otherwise you may query any

selected object's properties and attributes, and cycle through the selected set using the Previous and

Next buttons. You can delete a queried object using the Delete button. You can remove an object

from the selected set with the Unselect button. If multiple objects are selected, Change all selected

objects allows their common attributes to be changed. For example, if shapes are selected then the

layer may be changed for all shapes. If the object has connectivity, a Net properties tab is added to

the dialog. All objects may have user or system-defined properties which can be manipulated on the

Properties tab page.

Figure 114 - Query Object Properties

August 30,
2023

GLADE REFERENCE MANUAL

126

Properties can be added as string, float, integer, boolean, list or orient. Click on the property name

or value to change the text, or click on the type and select the type in the combo box that will

appear. Click on the '+' button to add a (initially blank) property entry, or select a property and click

on the '-' button to delete the property.

There is currently no undo capability if you delete a property.

2.6.36 Edit->Properties->Query CellView

The Edit->Properties->Query CellView command displays the query dialog for the current cellView.

2.6.37 Edit->Search…

The Edit->Search… command displays the Search dialog.

Figure 115 - Search

Find searches for instances by name, instances by master name (cell name), nets by name or text

labels by name. Names can be matched by Wildcard (e.g. VDD* matches VDD1, VDD2, VDD) or by

RegExp (regular expressions). Objects that match the selection criteria can be added to the selected

August 30,
2023

GLADE REFERENCE MANUAL

127

set or highlighted. In the case of highlighted nets, they can be displayed either as the actual net

shapes highlighted, or by a Spanning Tree between the instance pins of the instances the net

connects to, or as a Steiner tree. This is useful, for example, in highlighting the connectivity of

unrouted nets; the spanning tree is a good approximation to the path an autorouter will take; the

Steiner tree is even better although can be slow on nets with many pins. The colour can be chosen

using the Highlight Colour button. Optionally the display can Zoom to Selected object(s) and it is

possible to clear all highlighted objects using the Clear highlighted button.

2.6.38 Edit->Bindkeys

The Edit->Bindkeys command displays the Edit Bindkeys dialog.

2.6.39 Create

2.6.40 Create->Instance…

The Create->Instance… command displays the Create Instance dialog.

Figure 116 - Create Schematic Instance

An instance is entered using a single left mouse click, which defines the origin of the instance. The

instance master cell can be chosen from those present in the library using the cellName combo box

and the viewName combo box. The instance's InstName is auto generated but can be changed by

the user if required in the instName field. Orientation can be one of R0, R90, R180, R270, MX,

MXR90, MY, MYR90. Arrays of instances can be generated if Num Rows and/or Num Cols is not 1;

the spacing between rows and columns is set by Row Spacing and Column Spacing respectively. The

instance bounding box is displayed during the command to assist in placement of the instance.

Rotate (or the bindkey ‘r’ during instance placement) rotates the instance counter clockwise. Mirror

Y (or the ‘y’ bindkey during instance placement) mirrors the instance about the Y axis. Mirror X (or

the ‘x’ bindkey during instance placement) mirrors the instance about the X axis.

August 30,
2023

GLADE REFERENCE MANUAL

128

Figure 117 - Create Instance Properties

The Instance Properties tab can be used to set properties on the instance, e.g. if the master cell is a

PCell or a symbol. The '+' button adds a new property row. The Property Name column allows the

property name to be edited. Clicking on the Property Type will display a combo box with the possible

property types, e.g. string, integer, float etc. The Property Value column contains the property

values. If Property Display is set to true, the property is displayed in the schematic.

2.6.41 Create->Wire…

The Create->Wire… command displays the Create Wire dialog.

Figure 118 - Create Wire

Create a wire at the initial point (either the current cursor position, if infix mode is on) or by a first

point entered by a left mouse click. Subsequent left mouse clicks add wire end points; use the

backspace key to back up an entered point, and use the return key or double click to end a wire. If

the wire starts or ends on another wire midpoint, a solder dot is automatically entered at the

junction of the two wires. If the wire starts or ends on the endpoint of an existing wire, the two

wires will be merged into a single continuous wire. If you click on a pin (either an IO pin or a device

pin) or click on a wire, the wire entry is ended.

Snap Angle sets the snap direction when entering a wire.

• HV means the wire will be created with a horizontal segment followed by a vertical segment.

August 30,
2023

GLADE REFERENCE MANUAL

129

• VH means the wire will be created with a vertical segment followed by a horizontal segment.

90 means the wire will snap to Manhattan directions.

• 45 means the wire will snap to 45 degree directions.

• Any means the wire can have any direction.

• Horiz means the wire can only be entered in a horizontal direction.

• Vert means the wire can only be entered in a vertical direction.

• Route will use an autorouter to route a wire from the initial point to the current cursor

position. The routing avoids obstructions (symbol boundary shapes and symbol pins); if the

current cursor position is over an obstruction the routed path is shown dashed as a straight

line from initial to current point, else it is shown in full as a solid line.

Wire Width sets the display width of the wire. A value of 0 or 1 means 1 pixel wide. Net can be used

to pre-set the net name for the wire; it is not necessary in most cases as a subsequent Check

CellView command will extract connectivity.

2.6.42 Create->Solder Dot

The Create->Solder Dot command creates a solder dot at the point entered by the cursor. If you

want to connect two crossing wires, use a solder dot, else they are assumed to be bridging and not

connected. The size of the dot can be set from the Display Options dialog.

2.6.43 Create->Label…

The Create->Label… command displays the Create Label dialog.

Figure 119 - Create Label

To label a wire with its net name, Label Text specifies the name of the label, along with Height,

Orientation, and Presentation. The Label Use should be 'normal label' label, and the Label Type

'normal'.

2.6.44 Create->Pin…

The Create->Pin… command displays the Create Pin dialog.

August 30,
2023

GLADE REFERENCE MANUAL

130

Figure 120 - Create Schematic Pin

A list of Pin Name(s) can be entered, separated by spaces. As each pin is positioned by left clicking, a

pin of the first name in the pin name list is created, and that name is removed from the list of pin

names. The pin Direction and pin Use can also be specified. Pins can be mirrored or rotated during

entry. A pin is actually an instance of a pin from the 'basic' library; if this library cannot be opened

when Glade starts an error will be reported and Create Pin will fail.

2.6.45 Create->Symbol

The Create->Symbol command displays the Create Symbol dialog.

Figure 121 - Create CellView

August 30,
2023

GLADE REFERENCE MANUAL

131

This command creates a symbol view from the existing schematic. Symbol Shape sets the shape of

the created symbol; valid options are Rectangle, Triangle and Circle. Pins shows the pins of the

symbol, derived from the schematic pins. The sides of the symbol the pins are placed on are give by

the Left/Bottom/Right/Top fields and consist of the pin names, delimited by spaces. The order of

pins is defined by the order in the table, for each side. Wire stub length is the length (in dbu) of the

wires from the symbol body to the pins. Pin Size is the size of the pin rectangles in dbu and defaults

to the same as the dot size used in schematics. NLPDeviceFormat is the property that is added to

the symbol to control netlisting. defaultParams if specified is a space delimited list of property

names/values (of the form ‘name’=’value’) that will be used to add NLP property formatted entries

for netlisting as a property with name ‘defaultParams’. This property is used to add default .subckt

parameters during CDL netlisting.

Figure 122 - Creating a symbol from a schematic cellView

2.6.46 Check

2.6.47 Check->Check CellView

The Check->Check CellView command must be used after creating or editing a schematic to extract

connectivity e.g. for netlisting. Various checks are performed including floating wires, floating pins

and shorted wires, and the checks can be controlled using the Check Options dialog. Bus connections

are checked for width and syntax. If errors are found, the number is reported and markers are

written on the marker layer to the cellView.

August 30,
2023

GLADE REFERENCE MANUAL

132

2.6.48 Check->View Errors…

The Check->View Errors… command displays the schematic error viewing dialog.

Figure 123 - View Errors

Errors are listed in the left hand panel; click on an error type to view the associated errors. Errors can

be stepped through via the Next and Prev buttons. Delete will delete an error marker.

2.6.49 Check->Clear Errors

The Check->Clear Errors command clears all error markers.

2.6.50 Check->Check Options…

The Check->Check Options… command displays the Check Options dialog.

Figure 124 - Check Options

August 30,
2023

GLADE REFERENCE MANUAL

133

Checks can be set to be ignored, to give warnings, or to give errors. If errors occur, then the

schematic cannot be netlisted until they are corrected and cleanly checked. Snap labels to wires will

snap label origins onto wires, if they are closer than Snap Distance. This is useful for e.g. import EDIF

where labels on schematics may not be positioned accurately due to grid issues.

2.6.51 Layout

The Layout menu commands facilitate generating layout from a schematic view.

2.6.52 Layout->Map Devices

The Layout->Map Devices command allows mapping a cell in the schematic to a different named cell

(usually PCell) in the layout.

Figure 125 - Map Devices

In the above dialog, the entries in the Device Name panel of the table map a cell name such as

cnm25modn in the schematic to a cell called cnm25modn_m in the layout. Entries in the Instance

Name panel can map specific instances of a cell to a different layout cell.

Device mapping can be set up to pre-seed the dialog using entries in the Glade technology file:

MAP cnm25modn TO cnm25modn_m layout ;
MAP cnm25modp TO cnm25modp_m layout ;
MAP cnm25cpoly TO cnm25cpoly_m layout ;

2.6.53 Layout->Gen Layout

To create a layout view from a schematic, use the Create Layout command.

August 30,
2023

GLADE REFERENCE MANUAL

134

Figure 126 - Create Layout

The target cellView is specified using the Library Name / Cell Name / View Name fields. If Create m

factor instances is set, then if a schematic instance has an integer property 'm', then multiple

instances of the cell will be created in the layout based on the value of the property, and the m

property is not passed to the layout PCell. If not checked, the m property is passed to the layout

PCell, if the PCell is required to handle this itself.

Scale Factor is used when the Placement method is Schematic. It scales the instance origin

coordinates by the factor, so the resulting layout mimics the schematic. The actual value required

will depend on the target library cells.

Utilisation is used to create the cell boundary layer in the resulting layout view. The area of all the

layout instances is summed, and divided by 100/utilisation%. If Width is specified, the cell boundary

will be rectangular with the specified width, and height will be computed from the area/width. If

Height is specified, the cell boundary rectangle will have the specified height and the width will be

August 30,
2023

GLADE REFERENCE MANUAL

135

computed from the area/height. If both Width and Height are specified, then the cell boundary

rectangle will use the specified width and height.

Placement method can be one of Schematic, Area or Group. Schematic placement uses the relative

coordinates of the schematic instance origins to place the layout cells. Area arranges the layout cells

by type (PMOS/NMOS/resistor/capacitor). Group will place cells according to group properties on

the schematic, id they have been specified, or place by schematic for those that have no group

properties.

The pin field allows pin width, side and layer to be specified for each pin. Pins are placed abutting

the cell boundary rectangle according to their side.

2.6.54 Layout->Create Group

The Create->Create Group command displays the Create Group dialog.

Figure 127 - Create Group

Group Name specifies the name of the group. The command takes a selected set of instances and

creates a group for group placement in Gen Layout. A string property with name "group" and value

given by the group name will be created on all the selected instances.

2.6.55 Layout->Add To Group

The Create->Add To Group command displays the Add to Group dialog.

Figure 128 - Add To Group

The selected instances are added to the group specified by the Group Name field.

2.6.56 Layout->Rename Group

The Create->Rename Group command renames an existing group.

August 30,
2023

GLADE REFERENCE MANUAL

136

Figure 129 - Rename Group

Group Name is the name of the group to rename. New name is the new name for the group.

2.6.57 Layout->Remove From Group

The Layout->Remove From Group command removes the selected instances from the group. This

command cannot be undone.

2.6.58 Layout->Delete Group

The Layout->Delete Group command displays the Delete Group dialog.

Figure 130 - Delete Group

The group specified by Group Name is deleted.

2.6.59 Layout->Edit Group

The Layout->Edit Group command allows setting the pattern for the layout of the group's instances.

August 30,
2023

GLADE REFERENCE MANUAL

137

Figure 131 - Edit Group

The instances of the group specified by Group Name are displayed as a grid, with different instance

basenames in different colours (an instance basename is the name as seen on the schematic e.g.

M6; the full name e.g. M6.0 consists of the basename and optionally the individual instances

expanded by m-factor as <basename>.0, <basename>.1 etc). The Rows and Cols spinboxes can be

used to change the generated array of devices; the size of the array is always greater than the

number of actual instances. Dummy Name is the name of the cellView to use for adding dummy

cells. Group Name sets the current group to edit. To change positions of instances, left click and drag

an instance to a new position; the source and destination instances are swapped.

For groups with more than one instance basename, the centre of gravity of the instances are shown

by a circle, coloured with the instance colour. If all instances centres of gravity coincide, then the

layout pattern is shown as being common centroid with the label in green. If not, the label indicator

is red.

Right clicking on an instance displays a context menu with options to mirror or rotate the device and

to add dummies before or after the current selected instance, and to delete a currently selected

dummy. Dummies are given the prefix IDMY to the instance name, followed by a period and a

number which is incremented for each dummy that is added. Dummy cells are generated as

August 30,
2023

GLADE REFERENCE MANUAL

138

instances of cells with the cell master specified by Dummy Name. Dummies are not (yet)

backannotated to the schematic and are not assigned connectivity. Instance orientations are shown

by the tab triangle which is in the top right for orientation R0, top left for MY etc.

Rows and Cols set the size of the group; if Decouple Row/Col count is not checked, as one is altered

the other is also so that the overall cell count is approximately maintained. If Decouple Row/Col

count is checked, then the number of rows and columns can be altered independently, however the

number cannot be reduced below that which would give a total number of grid entries less than the

number in the group. Group Orientation is a global orientation of the group and takes effect as a

transformation of all instances after any instance-specific mirroring. If Autoinsert Dummies is

checked, then dummy instances with type set by Dummy Name are added to the grid as it is resized.

The Left/Right/Up/Down arrows allow scrolling of the grid pattern. This allows e.g. adding a ring of

dummies easily.

The group patterns are saved to the schematic cellView as a property with name equal to the group

name. The value of this property is a string of the form "I0.0_0_0_0,I0.1_0_1_6" etc. where each

field delimited by a comma represents the instance name, the row number and the column number,

finally the orientation as a digit, delimited by an underscore.

2.6.60 Layout->Link To Layout

The Layout->Link to Layout command sets the mapping from schematic to layout. If you have two

windows open in MDI mode, one for the schematic and one for the layout, this allows cross probing

between layout instances and schematic instances. The corresponding instances are selected in the

linked cellView, and are highlighted. Note that layout linking is automatically carried out when Gen

Layout is run.

2.6.61 Layout->Clear Hilite

The Layout->Clear Hilite command clears any currently highlighted devices.

2.7 Symbol Menus

2.7.1 View

2.7.2 View->Fit

See Layout View menu

2.7.3 View->Fit+

See Layout View menu

2.7.4 View->Zoom In

See Layout View menu

2.7.5 View->Zoom Out

See Layout View menu

2.7.6 View->Zoom Selected

See Layout View menu

August 30,
2023

GLADE REFERENCE MANUAL

139

2.7.7 View->Pan

See Layout View menu

2.7.8 View->Redraw

See Layout View menu

2.7.9 View->Ruler

See Layout View menu

2.7.10 View->Delete Rulers

See Layout View menu

2.7.11 View->Cancel Redraw

See Layout View menu

2.7.12 View->Display Options…

See Schematic View menu

2.7.13 View->Selection Options…

See Schematic View menu

2.7.14 View->Pan/Zoom Options…

See Schematic View menu

2.7.15 Edit

2.7.16 Edit->Undo

See Schematic Edit menu

2.7.17 Edit->Redo

See Schematic Edit menu

2.7.18 Edit->Yank

See Layout View menu

2.7.19 Edit->Paste

See Layout View menu

2.7.20 Edit->Delete

See Schematic Edit menu

2.7.21 Edit->Copy

See Schematic Edit menu

2.7.22 Edit->Move

See Schematic Edit menu

2.7.23 Edit->Move By…

See Schematic Edit menu

August 30,
2023

GLADE REFERENCE MANUAL

140

2.7.24 Edit->Move Origin

See Schematic Edit menu

2.7.25 Edit->Stretch

See Schematic Edit menu

2.7.26 Edit->Rotate…

See Schematic Edit menu

2.7.27 Edit->Set Net…

See Schematic Edit menu

2.7.28 Edit->Select->Select All

See Schematic Edit menu

2.7.29 Edit->Select->Deselect All

See Schematic Edit menu

2.7.30 Edit->Properties->Query

See Schematic Edit menu

2.7.31 Edit->Properties->Query CellView

See Schematic Edit menu

2.7.32 Edit->Search…

See Schematic Edit menu

2.7.33 Edit->Edit Bindkeys…

See Schematic Edit menu

2.7.34 Create

Symbols require shapes on the ‘device’ layer to represent their structure, for example a zigzag line

for a resistor. Symbols have pins to allow connectivity when placed in a schematic. Finally symbols

have labels to display information such as instance name, model name etc.

2.7.35 Create->Create Line…

The Create->Create Line… command creates a line object.

Figure 132 - Create Line

August 30,
2023

GLADE REFERENCE MANUAL

141

Lines are created on the device layer. In Infix mode, the first point is the current position of the

cursor, else the first and subsequent points are prompted for. The backspace key can be used to

delete the last entered point. Pressing Enter or left double clicking terminates a Create Line

command. Snap Angle controls the entry mode. Wire Width sets the width of the line.

2.7.36 Create->Create Rectangle

The Create->Create Rectangle command creates a rectangle on the device layer.

2.7.37 Create->Create Polygon…

The Create->Create Polygon… command creates a polygon on the device layer.

Figure 133 - Create Polygon

In Infix mode, the first point is the current position of the cursor, else the first and subsequent points

are prompted for. The backspace key can be used to delete the last entered point. Pressing Enter or

left double clicking terminates a Create Line command. Snap Angle controls the entry mode.

2.7.38 Create->Create Circle…

The Create->Create Circle… command creates a circle on the device layer.

Figure 134 - Create Circle

In Infix mode, the current position of the cursor is used for the centre of the circle, else a point is

prompted for. The second point is s point on the circumference of the circle. Radius snap grid is the

snap grid of points on the circumference. Number of segments is the number of line segments used

to represent the circle.

2.7.39 Create->Create Ellipse…

The Create->Create Ellipse… command creates a circle on the device layer.

August 30,
2023

GLADE REFERENCE MANUAL

142

Figure 135 - Create Ellipse

In Infix mode, the current position of the cursor is used for the centre of the ellipse, else a point is

prompted for. The second point is s point on the circumference of the ellipse. Radius snap grid is the

snap grid of points on the circumference. Number of segments is the number of line segments used

to represent the ellipse.

2.7.40 Create->Create Arc…

The Create->Create Arc… Command creates an arc in the current cell on the current layer. Arcs are

entered using three left mouse clicks, or two clicks if Infix mode is set. The first click defines the

centre of a circle that has the required arc on its circumference. The second click defines the radius

of that circle, and the first point of the arc. The third click defines the span angle from the first point.

The arc will be drawn clockwise or anticlockwise depending on the start angle and the stop angle.

Note that arcs cannot be output to e.g. GDS2 or OASIS as they are line objects. They are intended for

use with the symbol editor only.

2.7.41 Create->Create->Label…

The Create->Create Label… command creates a label.

Figure 136 - Create Symbol Label

Label Text is the label text string. Label Use sets the use mode of the label:

• normal label: Can be used to represent general textual information, the current

layer is used.

• instance label : These are labels typically of the form [@instName] using NLP parser

syntax. They are created on the 'annotate' 'drawing7' layer/purpose. They are of

type 'NLPLabel'.

August 30,
2023

GLADE REFERENCE MANUAL

143

• pin label: These are labels typically of the form [@pinName] using NLP parser syntax.

They are created on the 'annotate' 'drawing8' layer/purpose. They are of type

'NLPLabel'.

• device label: These are labels e.g. [@l:l=%:l=0.13u] using NLP parser syntax. They are

created on the 'annotate' 'drawing' layer/purpose. They are of type 'NLPLabel'.

• device annotate: These are labels typically of the form [@cellName] using NLP

parser syntax. They are created on the 'annotate' 'drawing4' layer/purpose. They are

of type 'NLPLabel'.

Label Type is the type of the label:

• normal is a simple text string.

• NLPLabel is a label that will be interpreted according to NLP expression syntax.

• pyLabel is a label whose text will be evaluated by the Python interpreter.

2.7.42 Create->Create Pin…

The Create->Create Pin… command is used to create symbol pins.

Figure 137 - Create Pin

Pin Name is the name of the pin. Use is the pin type. Direction is the pin direction and sets the pin

shape used. It can be None (square pin), Input, Output (directional pin) or Inout (bidirectional pin). A

pin is actually an instance, and pin instances use masters from the ‘basic’ library.

2.7.43 Check

2.7.44 Check->Check

The Check->Check command checks the symbol view. It cleans up the symbol connectivity by

deleting any non-shape nets, deleting non-shape pins and setting any shapes with net info to be

pins.

2.8 Floorplan Menus

2.8.1 View

See the Layout View menus

2.8.2 Edit

See the Layout Edit menus

August 30,
2023

GLADE REFERENCE MANUAL

144

2.8.3 Create

See the Layout Create menus

2.8.4 Verify

See the Layout Verify menus

2.8.5 Floorplan

2.8.6 Floorplan->Initialise Floorplan

The Floorplan->Initialise Floorplan… command (Re)Initialises the floorplan.

Figure 138 - Initialise Floorplan

The Horizontal pin layer and Vertical pin layer fields set the layer for pins created on the top/bottom

and left/right edges of the design boundary, respectively. Aspect ratio is the block aspect ratio, with

numbers greater than 1 representing tall blocks and numbers less than 1 giving wide blocks.

Utilisation is the desired cell utilisation, i.e. the ratio of total cell area to design boundary area.

2.8.7 Floorplan->Create Rows...

The Floorplan->Create Rows… command creates rows for use with Place & Route.

Figure 139 - Create Rows

The design must have standard cells and a valid design boundary (a rectangle on the boundary

layer). A valid Site name must exist, which will normally be found automatically from the library is a

cell exists with the boolean property 'site'. Row orientation is the desired row orientation - R0, R180,

MX and MY create horizontal rows wheras the rest create vertical rows. Flip alternate rows if

checked will flip the orientation of adjacent rows to provide power track sharing in libraries that

August 30,
2023

GLADE REFERENCE MANUAL

145

support it. Rows per set can be either 1 or 2 and specifies the number of rows placed together

before any row spacing is applied. Row separation is the separation between sets of rows, in

microns. Alternatively Row utilisation can be give as a percentage. Margin specifies a margin around

the rows, which are created inside the design boundary (boundary layer).

2.8.8 Floorplan->Create Groups...

The Floorplan->Create Groups… command creates and/or edits groups for use with Place & Route.

Figure 140 - Create Groups

 Any existing groups are shown in the Groups list box on the left; clicking on a group in the list box

updates the Group name field, and also the Region name field if there is a region associated with the

group. Groups can be created using Create Group; instances must be selected first and a Group

name must be specified (or be an existing group name). Delete Group will delete a group specified by

the Group name. Select Group will select all instances of the group in the Group name field.

2.8.9 Floorplan->Create Region...

The Floorplan->Create Region… command creates a region for use with Place & Route.

Figure 141 - Create Region

A region is a rectangle on the Region layer with string properties type and name. Regions can be of

type Guide or Fence. Fence regions are hard constraints whereas Guide regions are soft constraints.

2.8.10 Floorplan->Placement->Place

The Floorplan->Placement->Place command places cells in rows using the UCLA Capo placer.

August 30,
2023

GLADE REFERENCE MANUAL

146

Figure 142 - Place Design

Glade exports LEF and DEF from the current design and invokes Capo; on completion, Glade reads in

the placed DEF.

The design must have rows for placement of cells, as defined using the Row layer, and a valid design

area as defined by the boundary layer. Placement regions may exist as defined by the Region layer.

Currently only horizontal cell rows are supported for placement - this is a limitation of the Capo

code. Rows can be flipped and cell orientations will obey row orientations (this is a bugfix from the

distribution Capo code which assumes all rows are N orientation)

2.8.11 Floorplan->Placement->Unplace

The Floorplan->Placement->Unplace command unplaces all standard cells. Cells are moved to the

right of the design area and have their orientation set to R0 and placement status set to unplaced.

2.8.12 Floorplan->Global Route->Global Route

The Floorplan->Global Route->Global Route command runs global routing on the design.

Figure 143 - Global Route

The design must be a placed standard cell or block design, imported using LEF/DEF or LEF/Verilog.

Global routing partitions the design into bins also known as gcells. The size of the gcell has a direct

impact on the speed and accuracy of the global routing: smaller gcells give a more accurate picture

of the congestion but at the expense of speed. Max pins/net to route limits global routing to nets

with less than the limit. Pattern route routes small two pin nets first using a L-shaped pattern. This is

much faster than routing nets using the full maze router.

The congestion map displayed shows the gcell grid and the edge congestion in a colourmap. Edges

that are blue have 0 more tracks available (supply) to route on than are required (demand). Cyan

August 30,
2023

GLADE REFERENCE MANUAL

147

edges have a demand of 1, green edges have a demand of 2, yellow 3, red 4, purple 5, white greater

than 5.

Currently the global router is single-layer i.e. all layers are compressed into one. This gives a good

idea of congestion but no layer by layer congestion map. This is an area for future enhancement, as

is accurately modelling obstructions.

2.8.13 Floorplan->Global Route->Show global routed net

The Floorplan->Global Route->Show global routed net command displays the path the global router

took for the user-specified net.

Figure 144 - Show global route

If a net is not displayed, either it has more pins than the max pins/net limit, or the net starts and

ends within the gcell.

2.8.14 Floorplan->Global Route->Toggle congestion map display

The Floorplan->Global Route->Toggle congestion map display command toggles the display of the

congestion map.

2.8.15 Floorplan->Placement->Check Overlaps

The Floorplan->Placement->Check Overlaps command checks for any overlapping standard cells in

the design, reporting their names and locations if found

2.8.16 Floorplan->Fillers->Add...

The Floorplan->Fillers->Add… command adds filler cells.

Figure 145 - Add Fillers

Rows must be present in order to add filler cells. The filler cells are specified by the filler name

pattern given (e.g. FILL*). The instance names of fillers are prepended by the given name prefix and

August 30,
2023

GLADE REFERENCE MANUAL

148

a count, e.g. FILLER1234. The site name needs to be specified from the list of site names. Power Net

and Ground Net are the names of the power and ground nets that the filler cells should be

connected to. Fillers can be added either for the whole row, or just between cells.

2.8.17 Floorplan->Fillers->Delete...

The Floorplan->Fillers->Delete… command deletes cells matching the pattern.

Figure 146 - Delete Fillers

Note that this can be used to delete any cells matching the pattern, not just filler cells.

2.8.18 Floorplan->Replace Views...

The Floorplan->Replace Views… command replaces instances with masters of one view type with

masters of another view type.

Figure 147 - Replace Views

Replacement view is the view to replace the existing master's view with. All Cells will replace all

instances in the current cellView. Selected Cells will replace just the instances in the selected set.

Report replaced instances will report to the logfile the instances changed.

2.8.19 Floorplan->highlightNetTypes...

The Floorplan->Highlight Net Types… command highlights DEF nets by type i.e. SIGNAL, ANALOG,

CLOCK, POWER, GROUND, RESET, SCAN, TIEOFF.

Figure 148 - Highlight Net Types

August 30,
2023

GLADE REFERENCE MANUAL

149

3 Verification

3.1 Layer Processing
Before using DRC or LPE (extraction) commands, you normally need to perform some layer

processing using boolean operations or select operations. For example in order to extract a MOS

transistor, we need to identify the gate area by using the geomAnd() of the poly and diffusion layers,

and we need to use the geomAndNot() of the diffusion and poly layers to split the diffusion between

the source and the drain of the device, else we end up with all devices S/D terminals shorted.

The following layer processing functions are supported. Note that these don't have to be used just

for DRC or LPE - you can use them in any python script for layer processing. The 'layers' that the

commands produce are in fact temporary binary edge files. These files are called file0000.dat,

file0001.dat etc. and are automatically deleted during geomEnd(). By default the layer files are

written in the directory that Glade is invoked in. However if the environment variable

GLADE_DRC_WORK_DIR is set to a valid directory, then they will be written to that directory instead.

Optional arguments are shown as e.g. hier=True, indicating that the default value of True is used if

the argument is not specified.

3.2 Boolean processing functions

3.2.1 geomBegin(cellView cv)

Initialise the DRC package. A valid cellView must be passed to initialise the package. The cellView will

be the one that subsequent processing operates on. Note the former equivalent function drcInit(cv)

is still supported, but deprecated.

3.2.2 geomEnd()

Uninitialise the DRC package. Working memory is freed. Temporary layer files are deleted. Note the

former equivalent function drcUnInit(cv) is still supported, but deprecated.

3.2.3 out_layer = geomGetShapes(‘layerName’, purpose = ‘drawing’, hier=True)

Initialises out_layer with all shapes on the layer layerName, with purpose purpose. purpose defaults

to ‘drawing’ if not given. The resulting derived out_layer contains merged shapes. The default is to

get all shapes through the hierarchy; if the optional parameter hier is False, then only top level

shapes are processed.

3.2.4 out_layer = geomStartPoly(vertices)

Creates a polygon from the given vertices list in the edge layer layer. The resulting output layer is not

merged. The vertex list must be in counterclockwise order and not self-intersecting. For example:

y4 = geomAddShape([[0,0], [1000, 0], [1000, 2000], [0, 2000]])

3.2.5 out_layer = geomAddPoly(layer, vertices)

Adds a polygon from the given vertices to the edge layer layer. The resulting output layer is merged

with existing shapes on the layer. The vertex list must be in counterclockwise order and not self-

intersecting. For example:

August 30,
2023

GLADE REFERENCE MANUAL

150

y3 = geomAddShapes(y3, [1000, 0], [1000, 2000], [0, 2000]])

3.2.6 out_layer = geomAddShape(layer, shape)

Adds a shape shape to the edge layer layer. The resulting out_layer is merged. For example:

y4 = geomEmpty()
cutshape = cv.dbCreateRect(cut, y4_lyr)
y4 = geomAddShape(y4, cutshape)

3.2.7 out_layer = geomAddShapes(layer, shapes)

Adds a python list of shapes to the edge layer layer. The resulting out_layer is merged. For example:

y3 = geomEmpty()
shapes = []
for i in range(0,4) :

shape = cv.dbCreateRect(box, y3_lyr)
box.offset(2000, 0)
shapes.append(shape)

y3 = geomAddShapes(y3, shapes)

3.2.8 geomNumShapes(layer)

Returns the number of shapes in a layer. This can be used as a test, e.g.

 if geomNumShapes(diff) != 0 :
 gate = geomAnd(poly, diff)

3.2.9 geomEmpty()

Returns a dummy empty out_layer .

3.2.10 geomBkgnd(size = 0.0)

Returns a layer with an extent the size of the cellView's bounding box, plus size (which defaults to

0.0um). This is useful for example to create a pwell layer when the original mask data just has nwell

information:

nwell = geomGetShapes(‘nwell’, ‘drawing’)
bkgnd = geomBkgnd()
psub = geomAndNot(bkgnd, nwell)

3.2.11 geomErase(layerName, purpose=’drawing’)

Erases any design data on layer layerName in the current cellView. purpose defaults to ‘drawing’ if

not given. Beware: there is no way of undoing this operation.

3.2.12 out_layer = geomMerge(layer)

Returns the merged shapes on layer. This is equivalent to a single layer OR. Note that

geomGetShapes() always merges raw input data, so there is normally no need to separately merge

layers.

August 30,
2023

GLADE REFERENCE MANUAL

151

3.2.13 out_layer = geomOr(layer1, layer2)

Returns the OR (union) of the two layers.

3.2.14 out_layer = geomAnd(layer1, layer2)

Returns the AND (intersection) of the two layers.

3.2.15 out_layer = geomNot(layer)

Returns the inverse of the layer. Effectively it runs geomAndNot(), with the first 'layer' being a

rectangle the size of the cellView's bounding box, and the second the specified layer.

3.2.16 out_layer = geomAndNot(layer1, layer2)

Returns the AND NOT of layer1 with layer2. This is equivalent to subtracting all shapes on layer2

from layer1.

3.2.17 out_layer = geomXor(layer1, layer2)

Returns the XOR of the two layers.

3.2.18 out_layer = geomSize(layer, size, flag = 0)

Returns the layer sized by size microns. A positive size grows the layer, while a negative size shrinks

the layer. If a shape should shrink so its width becomes zero, it will no longer be present in the

sized_layer . The third argument, flag, if not specified sizes all edges by size. If flag is set to 'vertical'

then sizing is only done in the vertical direction, if flag is set to 'horizontal' then sizing is only done in

the horizontal direction.

3.2.19 out_layer = geomTrapezoid(layer)

Returns the layer converted to vertically-maximal trapezoids. If layer has connectivity established via

geomConnect(), the connectivity will be maintained in the trapezoids generated.

3.3 Selection functions

3.3.1 select_layer = geomTouching(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that touch layer1. Touching is defined as any edge of layer2

polygons that touch an edge from a layer1 polygon. flag can be layer1 or layer2 (the default), and

controls which of the two layers that meet the criteria are output to select_layer. Optionally a count

can be specified which together with a comparison flag allows output only if the criteria is met. For

example:

 outLayer = geomTouching(well, active, layer1 | greaterorequal, 2)

Output shapes on the well layer that touch 2 or more active shapes.

August 30,
2023

GLADE REFERENCE MANUAL

152

Figure 149 geomTouching (layer1 is orange, layer3 is purple)

3.3.2 select_layer = geomNotTouching(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that do not touch layer1. Touching is defined as any edge of

layer2 polygons that touch an edge from a layer1 polygon. flag can be layer1 or layer2 (the default),

and controls which of the two layers that meet the criteria are output to select_layer. Optionally a

count can be specified which together with a comparison flag allows output only if the criteria is

met.

Figure 150 geomNotTouching (layer1 is orange, layer2 is purple)

3.3.3 select_layer = geomIntersecting(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that intersect layer1. Intersecting is defined as any edge of

layer2 polygons that intersects an edge from a layer1 polygon, i.e. the layer2 polygon is part inside,

part outside layer1. flag can be layer1 or layer2 (the default), and controls which of the two layers

that meet the criteria are output to select_layer. Optionally a count can be specified which together

with a comparison flag allows output only if the criteria is met.

August 30,
2023

GLADE REFERENCE MANUAL

153

Figure 151 geomIntersecting (layer1 is orange, layer2 is purple)

3.3.4 select_layer = geomNotIntersecting(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that do not intersect layer1. Intersecting is defined as any

edge of layer2 polygons that intersects an edge from a layer1 polygon, i.e. the layer2 polygon is part

inside, part outside layer1. flag can be layer1 or layer2 (the default), and controls which of the two

layers that meet the criteria are output to select_layer. Optionally a count can be specified which

together with a comparison flag allows output only if the criteria is met.

Figure 152 geomNotIntersecting (layer1 is orange, layer2 is purple)

3.3.5 select_layer = geomOverlapping(layer1, layer2, flags, count)

Select and return all shapes on layer2 that intersect layer1. Overlapping is defined as any area of

layer2 polygons that is common with a layer1 polygon, i.e. shares area. flag can be layer1 or layer2

(the default), and controls which of the two layers that meet the criteria are output to select_layer.

Optionally a count can be specified which together with a comparison flag allows output only if the

criteria is met.

August 30,
2023

GLADE REFERENCE MANUAL

154

Figure 153 geomOverlapping (layer1 is orange, layer2 is purple)

3.3.6 select_layer = geomNotOverlapping(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that do not overlap layer1. Overlapping is defined as any area

of layer2 polygons that is common with a layer1 polygon, i.e. shares area. flag can be layer1 or

layer2 (the default), and controls which of the two layers that meet the criteria are output to

select_layer. Optionally a count can be specified which together with a comparison flag allows

output only if the criteria is met.

Figure 154 geomNotOverlapping (layer1 is orange, layer2 is purple)

3.3.7 select_layer = geomInside(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that are completely enclosed by shapes on layer1. The shapes

may touch or be coincident with the enclosing shape. flag can be layer1 or layer2 (the default), and

controls which of the two layers that meet the criteria are output to select_layer. Optionally a count

can be specified which together with a comparison flag allows output only if the criteria is met.

August 30,
2023

GLADE REFERENCE MANUAL

155

Figure 155 geomInside)layer1 is orange, layer2 is purple)

3.3.8 select_layer = geomNotInside(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that are not enclosed by shapes on layer1. The shapes may

not touch or be coincident with the enclosing shape. flag can be layer1 or layer2 (the default), and

controls which of the two layers that meet the criteria are output to select_layer. Optionally a count

can be specified which together with a comparison flag allows output only if the criteria is met.

Figure 156 geomNotInside (layer1 is orange, layer2 is purple)

3.3.9 select_layer = geomContains(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that are enclosed but not touching internally by shapes on

layer1. flag can be layer1 or layer2 (the default), and controls which of the two layers that meet the

criteria are output to select_layer. Optionally a count can be specified which together with a

comparison flag allows output only if the criteria is met.

August 30,
2023

GLADE REFERENCE MANUAL

156

Figure 157 geomContains (layer1 is orange, layer2 is purple)

3.3.10 select_layer = geomOutside(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that are outside layer1. The shapes may touch or be

coincident with the enclosing shape. flag can be layer1 or layer2 (the default), and controls which of

the two layers that meet the criteria are output to select_layer. Optionally a count can be specified

which together with a comparison flag allows output only if the criteria is met.

Figure 158 geomOutside (layer1 is orange, layer2 is purple)

3.3.11 select_layer = geomNotOutside(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that are not outside layer1. The shapes may touch or be

coincident with the enclosing shape. flag can be layer1 or layer2 (the default), and controls which of

the two layers that meet the criteria are output to select_layer. Optionally a count can be specified

which together with a comparison flag allows output only if the criteria is met.

August 30,
2023

GLADE REFERENCE MANUAL

157

Figure 159 geomNotOutside (layer1 is orange, layer2 is purple)

3.3.12 select_layer = geomAvoiding(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that avoid layer1 and do not touch or overlap. flag can be

layer1 or layer2 (the default), and controls which of the two layers that meet the criteria are output

to select_layer. flag can be layer1 or layer2 (the default), and controls which of the two layers that

meet the criteria are output to select_layer.

Optionally a count can be specified which together with a comparison flag allows output only if the

criteria is met.

Figure 160 geomAvoiding (layer1 is orange, layer2 is purple)

3.3.13 select_layer = geomButting(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that have outside edges that abut layer1 outside edges. flag

can be layer1 or layer2 (the default), and controls which of the two layers that meet the criteria are

output to select_layer. Optionally a count can be specified which together with a comparison flag

allows output only if the criteria is met.

August 30,
2023

GLADE REFERENCE MANUAL

158

Figure 161 geomButting (layer1 is orange, layer2 is purple)

3.3.14 select_layer = geomNotButting(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that have outside edges that do not abut layer1 outside edges.

flag can be layer1 or layer2 (the default), and controls which of the two layers that meet the criteria

are output to select_layer. Optionally a count can be specified which together with a comparison

flag allows output only if the criteria is met.

Figure 162 geomNotButting (layer1 is orange, layer2 is purple)

3.3.15 select_layer = geomCoincident(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that have edges coincident with inside edges of layer1. flag

can be layer1 or layer2 (the default), and controls which of the two layers that meet the criteria are

output to select_layer. Optionally a count can be specified which together with a comparison flag

allows output only if the criteria is met.

August 30,
2023

GLADE REFERENCE MANUAL

159

Figure 163 geomCoincident (layer1 is orange, layer2 is purple)

3.3.16 select_layer = geomNotCoincident(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that have edges that are not coincident with inside edges of

layer1. flag can be layer1 or layer2 (the default), and controls which of the two layers that meet the

criteria are output to select_layer. Optionally a count can be specified which together with a

comparison flag allows output only if the criteria is met.

Figure 164 geomNotCoincident (layer1 is orange, layer2 is purple)

3.3.17 select_layer = geomButtOrCoin(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that have edges that abut or are coincident with inside edges

of layer1. flag can be layer1 or layer2 (the default), and controls which of the two layers that meet

the criteria are output to select_layer. Optionally a count can be specified which together with a

comparison flag allows output only if the criteria is met.

August 30,
2023

GLADE REFERENCE MANUAL

160

Figure 165 geomButtOrCoin (layer1 is orange, layer2 is purple)

3.3.18 select_layer = geomNotButtOrCoin(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that have edges that do not abut and are not coincident with

inside edges of layer1. flag can be layer1 or layer2 (the default), and controls which of the two layers

that meet the criteria are output to select_layer. Optionally a count can be specified which together

with a comparison flag allows output only if the criteria is met.

Figure 166 geomNotButtOrCoin (layer1 is orange, layer2 is purple)

3.3.19 select_layer = geomInteracts(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that interact with shapes on layer1. An interaction is defined

as overlapping, abutting, coincident, or inside. flag can be layer1 or layer2 (the default), and controls

which of the two layers that meet the criteria are output to select_layer. Optionally a count can be

specified which together with a comparison flag allows output only if the criteria is met.

August 30,
2023

GLADE REFERENCE MANUAL

161

Figure 167 geomInteracts (layer1 is orange, layer2 is purple)

3.3.20 select_layer = geomNotInteracts(layer1, layer2, flags, count=0)

Select and return all shapes on layer2 that do not interact with shapes on layer1. An interaction is

defined as overlapping, abutting, coincident, or inside. flag can be layer1 or layer2 (the default), and

controls which of the two layers that meet the criteria are output to select_layer. Optionally a count

can be specified which together with a comparison flag allows output only if the criteria is met.

Figure 168 geomNotInteracts (layer1 is orange, layer2 is purple)

3.3.21 out_layer = geomGetTexted(layer, layerName, purpose = ‘drawing’, name=None)

Returns all shapes on layer that have text labels on the layer/purpose pair given by layerName /

purpose. purpose defaults to drawing if not given. Optionally a name can be supplied e.g. ‘vdd’, and

then only shapes with text labels with that name are output to out_layer .

3.3.22 out_layer = geomGetNet(layer1, ‘netName’)

Gets all shapes on layer1’s layer (which must be an input or derived layer specified in geomConnect)
that are assigned to net with name ‘netName’.

3.3.23 out_layer = geomSetText(layer1, x, y, labelName, createPin=True)

Create a dummy text label at coordinate (x, y) on layer1’s layer with text string labelName.

August 30,
2023

GLADE REFERENCE MANUAL

162

3.3.24 out_layer = geomHoles(layer1, flags=greaterthan, count=0)

Returns the holes in polygons on layer1 and outputs them to out_layer. flags can be inner, in which

case the smallest area hole (innermost in the case of concentric shapes) for shapes with holes is

returned. An optional count can be specified, in which case output is only generated if the condition

set by flags is true i.e. the number of holes in the layer1 shape is lessthan (<), lessorequal (<=),

equals (==), not_equal (!=_). greaterthan (>) or greaterorequal (>=, the default).

Figure 169 geomHoles with inner flag

3.3.25 out_layer = geomNoHoles(layer1, flags=greaterthan, count=0)

Returns the polygons on layer1 and outputs them, minus any holes, to out_layer. An optional count

can be specified, in which case output is only generated if the condition set by flags is true i.e. the

number of holes in the layer1 shape is lessthan (<), lessorequal (<=), equals (==), not_equal (!=_).

greaterthan (>) or greaterorequal (>=, the default).

3.3.26 out_layer = geomGetHoles(layer1, flags=greaterthan, count=0)

Returns the holes for polygons on layer1 and outputs them to out_layer. flags and count set the

criteria for reporting holes; by default all holes are reported. If for example count is set to 2 and flags

to equals, holes will only be output for a polygon with 2 holes.

3.3.27 out_layer = geomGetHoled(layer1, flags=greaterthan, count=0)

Returns the polygons on layer1 that contain holes and outputs them (with no holes) to out_layer.

flags and count set the criteria for reporting polygons; by default all polygons with holes are

reported. If for example count is set to 2 and flags to equals, only polygons with 2 holes will be

output.

3.3.28 out_layer = geomGetNon90(layer1)

Returns the polygons on layer1 and outputs ones that have one or more edges that are non 90

degrees to out_layer.

3.3.29 out_layer = geomGetNon45(layer1)

Returns the polygons on layer1 and outputs ones that have one or more edges that are non 90 and

non 45 degrees to out_layer

August 30,
2023

GLADE REFERENCE MANUAL

163

3.3.30 out_layer = geomGetRectangles(layer1)

Returns the shapes on layer1 and outputs ones that are rectangular and not polygons, i.e. have 4

edges parallel to the X or Y axes.

3.3.31 out_layer = geomGetPolygons(layer1)

Returns the shapes on layer1 and outputs ones that are not rectangular, i.e. have at least one edge

not parallel to the X or Y axes.

3.3.32 out_layer = geomGetVertices(layer1, num, flags = equal)

Get shapes on layer1’s layer that have num vertices. Optionally flags can be set to equals, not_equal,
greaterthan, greaterorequal, lessthan, lessorequal.

3.4 DRC
DRC functions, like boolean operations, are edge-based, using a Bentley-Ottman scanline algorithm.

Edges are currently only considered in error if they project onto each other in the X or Y direction

with a distance between the edges that is a relation to the specified rule e.g. less than.

Perpendicular edges are not considered errors. The resulting error marker shapes are constructed

from the four vertices of the error edges, and are returned as an output layer where they may be

used for subsequent boolean operations.

3.4.1 Flags

Many commands take a flags parameter. Flags can be bitwise OR'd together using the '|' operator,

although some flags are mutually independent: samenet/diffnet; equals/not_equal/greaterthan/

greaterorequal/lessthan/lessorequal; horizontal/vertical/diagonal; layer1/layer2;

butting/coincident/inside/outside/over/not_over.

The flags are:

• none - No flag bits set.

• samenet - Used for geomSpace checks, check only carried out if shapes are on the
same net.

• diffnet - Used for geomSpace checks, check only carried out if shapes are on
different nets.

• vertical - Only vertical edges are checked.

• horizontal - Only horizontal edges are checked.

• diagonal - Only diagonal (45 degree) edges are checked.

• project - The checked edges must project, i.e. be parallel and share a common
parallel runlength.

• parallel - The checked edges must be parallel.

• abut - Used for geomSpace and geomEnclose checks. If set, abutting edges will flag
the spacing check, else abutting is allowed.

• equals - If set, violations are created where the test result is equal to the rule, e.g.
geomWidth(M1, 0.030, equal) will result in shapes with width equal to 30nm
selected for error/output.

• not_equal - If set, violations are created where the test result is not equal to the
rule, e.g. geomWidth(M1, 0.030, not_equal) will result in shapes with width not
equal to 30nm selected for error/output.

August 30,
2023

GLADE REFERENCE MANUAL

164

• greaterthan - If set, violations are created where the test result is greater than the
rule, e.g. geomGetVertices(M1, 4, greater) will result in shapes with more than 4
vertices selected for error/output. Note that greaterthan, when applied to
dimensional checks such as geomWidth or geomSpace, does not give the result that
may be expected (i.e. does not flag edges with width or space greater than the rule).
This is because edges are only searched within the rule distance for violating edges.

• greaterorequal – If set, violations are created where the test result is greater than or
equal to the rule. The same limitations for greaterthan apply to greaterorequal.

• lessthan - the default. Violations are created when the test result is less than the
rule.

• lessorequal - Violations are created when the test result is less than or equal to the
rule.

• output_only - Do not flag a violation on the marker, used when a DRC check
generates output edge data to be further processed.

• opposite - Report violations with opposite (projecting) lengths of the edges only.
Else the full length of the edges are reported.

• layer1 - layer1 shapes are output in selection operations.

• layer2 - layer2 shapes are output in selection operations (the default).

• butting - outside edges of layer1 that abut layer2 outside edges are checked.

• coincident - inside edges of layer1 that are coincident with outside edges of layer2
are checked.

• outside - edges of layer1 that are outside layer2 shapes are checked.

• inside - edges of layer1 that are inside layer2 shapes are checked.

• over - edges of layer1 that are coincident or inside layer2 shapes are checked.

• not_over - edges of layer1 that abut or are outside layer2 shapes are checked.

• inner – used with the geomHoles cmd to putput the innermost (smallest) hole in a
shape.

3.4.2 out_layer = geomWidth(layer1, rule, message=None)

Single layer width check. Checks layer1 for minimum width violations i.e. widths less than rule. The

‘width’ of a polygon is the shortest distance between two projecting edges. Error polygons are

created on the drcMarker layer in the current cellView. The rule dimension must be specified in

microns as a float.

An optional message will be written as a property 'drcWhy' on the marker shape if specified.

3.4.3 out_layer = geomWidth(layer1, rule, flags, message=None)

Single layer width check. Checks layer1 for minimum width violations i.e. widths less than rule. Error

polygons are created on the drcMarker layer in the current cellView. The rule dimension must be

specified in microns as a float.

Allowable flags are:

• horizontal

• vertical

• diagonal

• project

• equals

August 30,
2023

GLADE REFERENCE MANUAL

165

• not_equal

• lessthan

• lessorequal

• output_only

• opposite

An optional message will be written as a property 'drcWhy' on the marker shape if specified.

3.4.4 out_layer = geomAllowedWidths(layer1, rules, flags, message= None)

Single layer allowed widths check. Checks layer1 for allowed width violations. The widths must be

discrete values specified in rules, which is a python list. Error polygons are created on the drcMarker

layer in the current cellView. The rules must be specified in microns as a float.

Allowable flags are:

• horizontal

• vertical

• diagonal

• output_only

• opposite

An optional message will be written as a property 'drcWhy' on the marker shape if specified.

Example:

geomAllowedWidths(poly, [0.020, 0.022, 0.024], horizontal)

Horizontal poly must be 20nm, 22nm or 24nm wide only.

3.4.5 out_layer = geomLength(layer1, rule, flags, message=None)

Single layer length check. Checks layer1 for minimum length violations i.e. lengths less than rule. The

‘length’ of a polygon is the longest distance between two projecting edges. Error polygons are

created on the drcMarker layer in the current cellView. The rule dimension must be specified in

microns as a float.

Allowable flags are:

• horizontal

• vertical

• diagonal

• project

• equals

• not_equal

• lessthan

• lessorequal

August 30,
2023

GLADE REFERENCE MANUAL

166

• output_only

• opposite

3.4.6 out_layer = geomEdgeLength(layer1, layer2, rule, flags, message=None)

Checks layer1 for edge length violations i.e. lengths less than rule, where edges of layer1 related to

shapes on layer2 are checked. The relation of layer1 edges to layer2 edges can be specified by flags.

Error polygons are created on the drcMarker layer in the current cellView. The rule dimension must

be specified in microns.

Allowable flags are:

• horizontal

• vertical

• diagonal

• butting

• coincident

• inside

• outside

• over

• not_over

• equals

• not_equal

• lessthan

• lessorequal

• greaterthan

• greaterorequal

• output_only

• opposite

An optional message will be written as a property 'drcWhy' on the marker shape if specified.

Example:

geomEdgeLength(gate, active, 0.13, coincident, "Gate length < 0.13um")

Device length (gate edge coincident with active edge) must be 130nm or greater.

3.4.7 out_layer = geomSpace(layer1, rule, message= None)

3.4.8 out_layer = geomSpace(layer1, rule, flags, message= None)

Single layer spacing check. Checks layer1 for minimum spacing violations i.e. single layer spacings

less than rule. Error polygons are created on the drcMarker layer in the current cellView. The rule

dimension must be specified in microns as a float. Note that spacing violations between edges of the

August 30,
2023

GLADE REFERENCE MANUAL

167

same polygon are not reported; to detect these perform a geomNotch check. An optional message

will be written to the error marker flag if specified. flags can be used to control the spacing check.

Allowable flags are:

• samenet

• diffnet

• vertical

• horizontal

• diagonal

• project

• parallel

• abut

• not_equal

• equals

• lessthan

• lessorequal

• opposite

• output_only

Example:

geomSpace(active, 0.2, samenet, "active space < 0.2 for same net")

geomSpace(active, 0.3, diffnet, "active space < 0.3 for different nets")

3.4.9 out_layer = geomSpace(layer1, rule, width, length, flags, message= None)

Single layer width/length dependent spacing check. Checks layer1 for minimum spacing violations

i.e. single layer spacing less than rule, where one of the shapes has a width > width and a parallel run

length > length. Error polygons are created on the drcMarker layer in the current cellView. The rule,

width and length dimensions must be specified in microns as a float. Note that spacing violations

between edges of the same polygon are not reported; to detect these perform a geomNotch check.

An optional message will be written to the error marker flag if specified. flags can be used to control

the spacing check.

Allowable flags are:

• samenet

• diffnet

• vertical

• horizontal

• diagonal

• project

• parallel

• abut

• not_equal

• equals

August 30,
2023

GLADE REFERENCE MANUAL

168

• lessthan

• lessorequal

• opposite

• output_only

Example:

 geomSpace(active, 0.2, 10.0, samenet, "active space < 0.2 for same net with width > 10.0")

 geomSpace(active, 0.3, 10.0, diffnet, "active space < 0.3 for different nets with width >

10.0")

3.4.10 out_layer = geomSpace2(layer1, rule, width, length, flags=0, message = None)

Single layer width/length dependent spacing check. Checks layer1 for minimum spacing violations

i.e. single layer spacing less than rule, where both of the shapes has a width > width and a parallel

run length > length. Error polygons are created on the drcMarker layer in the current cellView. The

rule, width and length dimensions must be specified in microns as a float. Note that spacing

violations between edges of the same polygon are not reported; to detect these perform a

geomNotch check. An optional message will be written to the error marker flag if specified. flags can

be used to control the spacing check.

Allowable flags are:

• samenet

• diffnet

• vertical

• horizontal

• diagonal

• project

• parallel

• abut

• not_equal

• equals

• lessthan

• lessorequal

• opposite

• output_only

Example:

geomSpace2(active, 0.2, 10.0, samenet, "active space < 0.2 for same net with width >

10.0")

geomSpace2(active, 0.3, 10.0, diffnet, "active space < 0.3 for different nets with width >

10.0")

August 30,
2023

GLADE REFERENCE MANUAL

169

3.4.11 out_layer = geomSpace(layer1, layer2, rule, message= None)

3.4.12 out_layer = geomSpace(layer1, layer2, rule, flags, message= None)

Two layer spacing check. Checks layer1 to layer2 for minimum spacing violations i.e. a two layer

spacing check. Error polygons are created on the drcMarker layer in the current cellView. The rule

dimension must be specified in microns as a float. An optional message will be written to the error

marker flag if specified. flags can be used to control the spacing check.

Allowable flags are:

• samenet

• diffnet

• vertical

• horizontal

• diagonal

• project

• parallel

• abut

• not_equal

• equals

• lessthan

• lessorequal

• opposite

• output_only

Example:

 geomSpace(nwell, ndiff, 0.2, samenet, "nwell to n+ diff space < 0.2 for same net")

 geomSpace(nwell, ndiff, 0.3, diffnet, "nwell to n+ diff space < 0.3 for different nets")

3.4.13 out_layer = geomSpace(layer1, rule, length, flags=0, message = None)

Single layer length dependent spacing check. Checks layer1 for minimum spacing violations i.e. single

layer spacing less than rule, where the shapes have a parallel run length that can be lessthan,

lessorequal, greaterthan, greaterorequal, equals or not_equal to length, according to flags. Error

polygons are created on the drcMarker layer in the current cellView. The rule and length dimensions

must be specified in microns as a float. Note that spacing violations between edges of the same

polygon are not reported; to detect these perform a geomNotch check. An optional message will be

written to the error marker flag if specified. flags can be used to control the runlength check.

Allowable flags are:

• vertical

• horizontal

• diagonal

• not_equal

August 30,
2023

GLADE REFERENCE MANUAL

170

• equals

• lessthan

• lessorequal

• greaterthan

• greaterorequal

• opposite

• output_only

Example:

geomSpace(active, 0.2, 10.0, lessthan, "active space < 0.2 with runlength < 10.0")

geomSpace(active, 0.3, 10.0 , equals, "active space < 0.3 with runlength =10.0")

3.4.14 out_layer = geomAllowedSpaces(layer1, rules, flags, message= None)

Single layer allowed spacing check. Checks layer1 for spacing violations. The spaces must be discrete

values specified in rules, which is a python list. Spacing greater or equal to the last rule is allowed.

Error polygons are created on the drcMarker layer in the current cellView. The rules must be

specified in microns as a float.

Allowable flags are:

• vertical

• horizontal

• diagonal

• project

• abut

• opposite

• output_only

An optional message will be written as a property 'drcWhy' on the marker shape if specified.

Example:

geomAllowedSpaces(active, [0.020, 0.022, 0.024], horizontal)

In the above, the layer 'active' must have spacing of either 20nm, 22nm or >= 24nm.

3.4.15 out_layer = geom2DSpace(layer1, rules, flags, message= None)

Checks layer1 for spacing that is both length and width dependent; if the length of one or more of

the shapes and the width of one or more of the shapes is less than the rule for that length/width

range, and error is generated. The rules consist of a 2D python array, of which row 0 defines the

widths of the rules, and column 0 defines the lengths of the rules. The other entries are the rule

values. The rules must be specified in microns as a float. flags are as defined above. An optional

message will be written as a property 'drcWhy' on the marker shape if specified.

Allowable flags are:

August 30,
2023

GLADE REFERENCE MANUAL

171

• vertical

• horizontal

• diagonal

• project

• abut

• opposite

• output_only

Example:

 geom2DSpace(m1, [[0.000, 0.028, 0.032, 0.040, 0.064, 0.120, 0.240, 0.320, 0.600],

 [0.028, 0.036, 0.036, 0.036, 0.036, 0.036, 0.036, 0.036, 0.036],

 [0.240, 0.036, 0.068, 0.076, 0.076, 0.076, 0.076, 0.076, 0.076],

 [0.480, 0.036, 0.068, 0.076, 0.092, 0.092, 0.092, 0.092, 0.092],

 [1.200, 0.036, 0.068, 0.076, 0.092, 0.120, 0.120, 0.120, 0.120],

 [1.800, 0.036, 0.068, 0.076, 0.092, 0.120, 0.240, 0.240, 0.240],

 [2.400, 0.036, 0.068, 0.076, 0.092, 0.120, 0.240, 0.320, 0.600]],

project, "M1 Minimum spacing")

The above defines a minimum rule of 28nm for normal metal. For metal wider than 240nm then if

the width is wider than 36nm the rule is 68nm, if the width is wider than 40nm the rule is 76nm etc.

3.4.16 out_layer = geomNeighbours(layer1, dist, rule, num = 2, message= None

Single layer nearest neighbour check. Checks layer1 shapes for neighbouring shapes within dist. If

there are more than num shapes within rule, then an error is generated. This check is for

contacts/vias in e.g. 40nm or below processes; only rectangular shapes can be checked.

Allowable flags are:

• opposite

• output_only

Example:

geomNeighbours(CO, 0.11, 0.10, 3, "CO Space to 3 neighbours < 0.10 (CO.S.2)")

The above checks if there are 3 neighbouring CO shapes within 0.11um of a CO shape. If so they

have to be spaced by 0.10um.

3.4.17 out_layer = geomNotch(layer1, rule, message= None)

3.4.18 out_layer = geomNotch(layer1, rule, flags, message= None)

Single layer notch check. Checks layer1 shapes for notch violations. Error polygons are created on

the drcMarker layer in the current cellView. The rule dimension must be specified in microns as a

float. Note that notches are effectively spacing violations between edges of the same polygon. An

August 30,
2023

GLADE REFERENCE MANUAL

172

optional message will be written as a property 'drcWhy' on the marker shape if specified. flags can

include opposite (to set the error marker edges to opposite edges only) and output_only (to output

the error shape to out_layer and not as a shape on the marker layer).

3.4.19 out_layer = geomLineEnd(layer1, rule, num_ends, min_adj_edge_length=0.0,

flags=0, message= None)

Single layer end-of-line check. Checks layer1 for minimum end-of-line spacings. The spacing is from

the line end edge to another edge which is either a normal edge (if num_ends=1) or another line end

edge (if num_ends = 2). A line end edge is a horizontal edge with two adjacent vertical edges, or a

vertical edge with two adjacent horizontal edges. The adjacent edge length must be greater than the

line end edge length, or min_adj_edge_length, whichever is the greater. The rule dimension and the

min_adj_edge must be specified in microns as a float.

Allowable flags are:

• vertical

• horizontal

• diagonal

• not_equal

• equals

• lessthan

• lessorequal

• greaterthan

• greaterorequal

• opposite

• output_only

August 30,
2023

GLADE REFERENCE MANUAL

173

Figure 170 - geomLineEnd

In the above example, the rules are as follows:

geomSpace(metal1, 0.06)

geomLineEnd(metal1, 0.08, 1)

geomLineEnd(metal1, 0.07, 2)

3.4.20 out_layer = geomLineEnd(layer1, layer2, rule, num_ends,

min_adj_edge_length=0.0, flags = 0, message= None)

As above but for two layer checking.

3.4.21 out_layer = geomPitch(layer1, rule, flags = 0, message= None)

Single layer pitch check. Checks layer1 pitch against the rule specified and flags an error if the pitch is

less than the rule. If the flag is ‘equals’ then shapes with pitch equal to the rule are flagged; if the

flag is ‘not_equal’ then shapes not equal to the rule are flagged. The rule dimension must be

specified in microns as a float. An optional message will be written as a property 'drcWhy' on the

marker shape if specified.

Allowable flags are:

• vertical

• horizontal

August 30,
2023

GLADE REFERENCE MANUAL

174

• diagonal

• equals

• not_equals

• opposite

• output_only

3.4.22 out_layer = geomOverlap(layer1, layer2, rule, message= None)

3.4.23 out_layer = geomOverlap(layer1, layer2, rule, flags, message= None)

Two layer overlap check. Checks layer1 to layer2 for minimum overlap violations i.e. layer1 overlaps

layer2 by less than rule. Error polygons are created on the drcMarker layer in the current cellView.

The rule dimension must be specified in microns as a float. An optional message will be written as a

property 'drcWhy' on the marker shape if specified.

Allowable flags are:

• vertical

• horizontal

• diagonal

• equals

• not_equals

• lessthan

• lessorequal

• opposite

• output_only

3.4.24 out_layer = geomEnclose(layer1, layer2, rule, message= None)

3.4.25 out_layer = geomEnclose(layer1, layer2, rule, flags, message= None)

Two layer enclosure check. Checks layer1 to layer2 for minimum enclosure violations i.e. layer1

encloses layer2 by less than rule. Error polygons are created on the drcMarker layer in the current

cellView. The rule dimension must be specified in microns as a float. The optional flags can have the

'abut' flag set which considers abutting edges an error; otherwise abutting edges are allowed. An

optional message will be written as a property 'drcWhy' on the marker shape if specified.

Allowable flags are:

• vertical

• horizontal

• diagonal

• equals

• not_equals

• lessthan

August 30,
2023

GLADE REFERENCE MANUAL

175

• lessorequal

• opposite

• output_only

3.4.26 out_layer = geomEnclose2(layer1, layer2, rule1, rule2, rule3, edges, message=

None)

Tow layer enclosure check. Checks layer1 to layer2 for minimum enclosure violations. layer1 should

enclose layer2 by rule1 normally. However if there 1 or more edges of layer2 with enclosure greater

than or equal to rule2, but less than rule1, and edges (e.g. 2) perpendicular edges of layer1

enclose layer2 by greater than or equal to rule3, then no violation occurs. The rule* dimensions must

be specified in microns as a float. An optional message will be written to the error marker flag if

specified. Any edge enclosure less than rule2 will give an error. The parameter edges must be 1 or 2.

Example:

geomEnclose2(nwell, active, 0.18, 0.08, 0.23, 2)

Enclosure of active by nwell should be >= 0.18um, however if 2 parallel edges of active have a nwell

enclosure of 0.08um then the other two perpendicular edges should have a minimum enclosure of

0.23um.

layer = geomEnclose2(cont, metal, 0.15, 0.05, 0.30, 1)

Enclosure of cont by metal should be 0.15um, however an edge can be enclosed by 0.05um if one

perpendicular edge is greater than or equal to 0.3um.

3.4.27 out_layer = geomAllowedEncs(layer1, layer2, rules, message= None)

Two layer allowed enclosure check. Checks layer1 to layer2 for minimum enclosure violations. layer1

must enclose layer2 according to rules, which is a list of triplets e.g. [[0.010, 0.010, 4], [0.0, 0.032, 2],

[0.002, 0.028, 2]]. For each triplet, the first two numbers are allowed enclosures, and the third

number is the number of sides that must obey the second rule. For example, in the first case [0.010,

0.010, 4] all 4 sides of layer2 can be enclosed by 10nm. In the second case [0.0, 0.032, 2] there can

be 2 opposite sides with enclosure of 0nm, and the other two sides must have an enclosure of 32nm.

Finally in the third case [0.002, 0.028, 2] there can be 2 opposite sides with enclosure of 2nm and the

other two sides must have enclosure of 28nm. These are the only allowed enclosure values; anything

else will give a violation. The rule dimensions must be specified in microns as a float. An optional

message will be written as a property 'drcWhy' on the marker shape if specified.

3.4.28 out_layer = geomExtension(layer1, layer2, rule, message= None)

3.4.29 out_layer = geomExtension(layer1, layer2, rule, flags, message= None)

Two layer extension check. Checks layer1 to layer2 for minimum extension violations i.e. layer1

extends beyond layer2 by less than rule. Error polygons are created on the drcMarker layer in the

August 30,
2023

GLADE REFERENCE MANUAL

176

current cellView. The rule dimension must be specified in microns as a float. An optional message

will be written as a property 'drcWhy' on the marker shape if specified.

Allowable flags are:

• vertical

• horizontal

• diagonal

• equals

• not_equals

• lessthan

• lessorequal

• opposite

• output_only

3.4.30 out_layer = geomArea(layer1, minrule, maxrule=9e99, message= None)

Single layer area check. Checks layer1 shapes for minimum area violations that meet the condition

(minrule < area) || (area < maxrule). Error polygons are created on the drcMarker layer in the

current cellView. The minrule and optional maxrule dimensions must be specified in microns as a

float. An optional message will be written as a property 'drcWhy' on the marker shape if specified.

3.4.31 out_layer = geomArea(layer1, minrule, flags=0, message= None)

Single layer area check. Checks layer1 shapes for minimum area violations that meet the condition

minrule op area. Error polygons are created on the drcMarker layer in the current cellView. The

minrule dimension must be specified in microns as a float. An optional message will be written as a

property 'drcWhy' on the marker shape if specified.

Allowable flags to control op are:

• equals

• not_equals

• lessthan

• lessorequal

• greaterthan

• greaterorequal

3.4.32 out_layer = geomAreaIn(layer1, minrule, maxrule=9e99, message= None)

Single layer internal (hole) area check. Checks layer1 shapes and flags shapes that meet the

condition (area > minrule) && (area < maxrule). Error polygons are created on the drcMarker layer in

the current cellView. The minrule and optional maxrule dimensions must be specified in microns as a

float. An optional message will be written as a property 'drcWhy' on the marker shape if specified.

August 30,
2023

GLADE REFERENCE MANUAL

177

3.4.33 out_layer = geomAreaIn(layer1, minrule, flags=0, message= None)

Single layer internal (hole) area check. Checks layer1 shapes and flags shapes that meet the

condition area op minrule. Error polygons are created on the drcMarker layer in the current

cellView. The minrule and optional maxrule dimensions must be specified in microns as a float. An

optional message will be written as a property 'drcWhy' on the marker shape if specified.

Allowable flags to control op are:

• equals

• not_equals

• lessthan

• lessorequal

• greaterthan

• greaterorequal

3.4.34 area = geomMinDensity(layer1, rule, message= None)

Checks layer1 for minimum density of the layer, where rule is the percentage of the layer area of the

design bounding box. An optional message will be written as a property 'drcWhy' on the marker

shape if specified. This function returns the area in square dbu of the layer.

3.4.35 area = geomMaxDensity(layer1, rule, message= None)

Checks layer1 for maximum density of the layer, where rule is the percentage of the layer area of the

design bounding box. An optional message will be written as a property 'drcWhy' on the marker

shape if specified. This function returns the area in square dbu of the layer.

3.4.36 geomDensity(layer1, window_x, window_y, step_x, step_y, rule, flags, message=

None)

Checks layer1 for density locally in a rectangle of size given by window_x and window_y. The

window is stepped in increments of step_x and step_y over the design bounding box. Flags will

determine how the area rule is applied (rule is a percentage). An optional message will be written as

a property 'drcWhy' on the marker shape if specified.

Allowable flags are:

• equals

• not_equals

• lessthan

• lessorequal

• greaterthan

• greaterorequal

August 30,
2023

GLADE REFERENCE MANUAL

178

3.4.37 out_layer = geomMargin(layer1, rule, message= None)

Checks layer1 shapes for minimum margin violations. A margin violation is the distance (typically

greater than the normal minimum spacing), from the vertex common to two adjacent concave edges

of a polygon, to edge(s) of a nearby polygon. Error polygons are created on the drcMarker layer in

the current cellView. The rule dimension must be specified in microns as a float. An optional

message will be written as a property 'drcWhy' on the marker shape if specified.

Figure 171 - geomMargin

In the above example, the distance of the inner (concave) edge of the L shaped polygon vertex is less

than the specified rule to the nearest vertex of the rectangle. Two error flags are created because

there are two edges of the rectangle containing the vertex in violation.

3.4.38 out_layer = geomOffGrid(layer1, grid, marker_size=0.1, message= None)

Checks all layer1 vertices of edges to see if they are on a multiple of the grid specified in microns by

grid. marker_size is the size of the marker in microns (shown as a '+' centered on the offgrid vertex)

on the drcMarker layer. An optional message will be written to the error marker flag if specified. The

return value is the number of off-grid vertices found.

3.4.39 out_layer = geomAdjLength(layer1, rule, length, flags, message= None)

Checks layer1 vertices for adjacent edge length, If one edge has length less than length, the other

edge must have length greater than rule. The rule dimension must be specified in microns as a float.

An optional message will be written as a property 'drcWhy' on the marker shape if specified.

Allowable flags are:

• equals

August 30,
2023

GLADE REFERENCE MANUAL

179

• not_equals

• lessthan

• lessorequal

• greaterthan

• greaterorequal

3.4.40 out_layer = geomAllowedSize(layer1, rule, message= None)

Checks the size of rectangular shapes e.g. contacts or vias on layer1. rule specifies the permissible

edge lengths as length/width pairs. The rule dimensions must be specified in microns as a float. An

optional message will be written as a property 'drcWhy' on the marker shape if specified.

For example:

geomAllowedSize(via, [[0.028, 0.028],[0.028,0.056]], "Via is rectangular 28x28 or

28x56nm")

Checks shapes on the layer via which must be rectangles with either sides of 28nm or 2 sides of

28nm and 2 sides of 56nm.

3.4.41 num = geomGetCount()

Returns the number of errors detected in the most recent DRC check.

3.4.42 num = geomGetTotalCount()

Returns the total number of DRC errors since the start of the run.

3.5 Extraction
Glade can trace connectivity in a layout and identify devices such as resistors, capacitors, diodes,

mos and bipolar transistors plus parasitic capacitors. To extract a layout, a python script is used to

form derived layers, run connectivity tracing and extract devices. The results are saved to a cellView

with the viewName of ‘extracted’ but this can be changed using the setExtViewName command.

Extraction rules consist of 4 steps:

1. Reading layer data and merging it

2. Forming derived layers

3. Extracting connectivity

4. Extracting devices

5. Saving interconnect layers

Derived layers are used to identify devices and break connecting layers such as poly or diffusion

where they touch active devices.

August 30,
2023

GLADE REFERENCE MANUAL

180

Figure 172 - MOS derived layers

Figure 172 - MOS derived layers shows a MOS device formed by diffusion and poly layers. Two

derived layers are generated; the recognition region, formed by using geomAnd() to produce the

intersection of the tow layers, and the S/D terminals, produced by using geomAndNot() to subtract

the poly area from the diffusion. This is necessary, else connectivity tracing on the diffusion would

see a short between the S and D terminals.

Connectivity tracing is performed using the geomConnect command. This traces connectivity

through specified layer-layer overlaps, for example metal1 connectivity to poly though a contact

layer.

Device extraction is performed using the extract… commands. When devices are extracted, an

extraction PCell (e.g. nch_ex.py in the example data) is used to form an instance in the extracted

view which is connected via the layers traced in geomConnect. The PCell is passed the coordinates of

the recognition region used to identify the device, along with any properties for the particular type

of device.

Saving interconnect is done using the saveInterconnect() function. This takes a derived layer and

maps it back to a technology file layer/purpose. The layers being saved should have been present in

a geomConnect() command previously.

Parasitic extraction determines capacitance between connect layers either using a simple

area/perimeter calculation, or a more accurate (but much slower) 3D field solver ‘Fastcap’.

The extracted view can be netlisted to a CDL/Spice file; there are two methods by which the netlister

will format the lines for each instance in the file. If a string property named ‘NLPDeviceFormat’ is

August 30,
2023

GLADE REFERENCE MANUAL

181

present on the PCell master, this property allows user defined netlisting. See ‘NLP expressions’ for

more details of the NLPDeviceFormat syntax. If this property is not present, the netlister will look for

hardcoded property names on devices:

• MOS/TFT : ‘w’, ‘l’, ‘m’, ‘as’, ‘ad’, ‘ps’, ‘pd’

• Resistors : ‘r’, ‘w’, ‘l’

• Capacitors : ‘c’, ‘w’, ‘l’

• Inductors : ‘l’

• Diodes : ‘area’, ‘pj’ or ‘perim’

• Bipolars : ‘area’, ‘pj’ or ‘perim’

The hardcoded netlister expects specific pin names on the extraction PCell devices:

• MOS : D, G, S, B

• FET : D, G, S

• Resistors : A, B

• Capacitors : A, B

• Inductors : A, B

• Diodes : A, C

• Bipolars : C, B, E

3.5.1 setExtViewName(name)

Sets the name of the extracted view. The default is "extracted", but for e.g. abstract generation you

can set this to "abstract". Note this command should be given before any saveDerived /

saveInterconnect commands.

3.5.2 geomConnect([[viaLayer, bottomLayer, topLayer], [...]])

Trace connectivity through layers. This function takes a list of lists of layers, where the layers are a

via or contact layer and the layers that are connected by it. For example:

geomConnect([

 [cont, active, poly, metal1],

 [via1, metal1, metal2]

])

The above will connect active and metal1 by the cont layer, poly and metal1 also by the cont layer,

and metal1 and metal2 by the via1 layer. There is no limit to the number of lists of layers, or to the

number of layers connected by a contact layer. However the list of connected layers must have only

one contact/via layer, and that layer must be the first layer in the list. If shapes already have net

information (e.g. through the use of the geomLabel() command) then these shapes are used as initial

tracing points, and net names are propagated to connected shapes. Other shapes are assigned

automatically generated names (n0, n1, n2 etc). Shorts between shapes with assigned or traced net

names that are different are reported.

The geomConnect() command uses a scanline algorithm combined with graph labelling and is quite

fast compared to e.g. the Net Tracer, and is multithreaded. The number of threads used can be

controlled by setting the environment variable GLADE_THREADED_EXTRACTION. The env var can

take an optional value, being the maximum number of threads to run. For example on a Core i7 cpu

August 30,
2023

GLADE REFERENCE MANUAL

182

with 4 physical cores each capable of running 2 threads, you could set

GLADE_THREADED_EXTRACTION=8

3.5.3 geomLabel(layer, labelLayer, labelPurpose = "drawing", createPin= True)

Label a layer with existing text labels. If a text label with layer labelLayer and purpose labelPurpose

has its origin contained in a shape on layer, then the shape will have its net name set to the text

label name. Note that labelling layers should be performed prior to connectivity extraction for net

name propagation. Logical nets/pins will be created in the extracted view for all text labels that

attach to shapes on layer. If not specified, labelPurpose defaults to "drawing" . Note that labels are

only used for the top level of the design; in other words labels at lower levels of the layout hierarchy

are ignored. For LVS purposes, labelling power, ground, clock and primary IOs is all that is usually

necessary. createPin can be set to False (default is True) to disable creating a pin - only a net will be

created.

3.5.4 geomSetText(layer, xcoord, ycoord, labelName, createPin = True)

Labels layer with text label labelName at the coordinates given by xcoord and ycoord (in microns).

Returns True if a shape on the layer was found at the given xy coordinates; False if no shape was

found (i.e. the command failed). This is useful if you cannot modify the original layout and want to

try and resolve LVS errors by forcing a shape to be a specified net name. createPin can be set to

False (default is True) to disable creating a pin - only a net will be created.

3.5.5 saveDerived(layer, why, outLayer = TECH_DRCMARKER_LAYER)

Outputs layer geometries as polygons to the current cellView. The layer they are output to can be

set by outLayer, which defaults to the drcMarker layer. Each polygon has a string property drcWhy

with value set to the string why.

3.5.6 saveDerived(layer, layerName, purpose, viewType="ext_view")

Outputs layer geometries as polygons to the current cellView. The layer they are output to can be

set by layerName and purpose. If viewType is specified, the layer geometries are output to this view

name rather than the default view name 'extracted'.

3.5.7 saveInterconnect([layer1, layer2, ...])

Creates a new cellview with the same cell name as the current cell, and a view name of 'extracted'.

Shapes on layers specified are created in the extracted cellview. Shapes will have net information if

they are on layers present in geomLabel and/or geomConnect() commands. Optionally instead of a

layer name, a list of derived layer name, a techFile layer name and optionally a purpose can be

specified, for example:

saveInterconnect([

 poly,

 active,

 [metal1, "M1"],

 [metal2, "M2", "pin"]

])

Original layers that are generated from geomGetShapes() do not need the techFile layer

name/purpose specified, but derived layers MUST specify the target layer name, else they will be

assigned a fake layer number which the LSW will not show. It is often desirable to add dummy layers

to the techFile and use these for saveInterconnect(). For example, when extracting a lateral PNP,

derived layers for emitter, base and collector need to be generated for the extractBjt() terminals. In

August 30,
2023

GLADE REFERENCE MANUAL

183

this case it's desirable to have dummy layers 'emitter', 'base' and 'collector' so that devices get

extracted correctly.

If an existing layer name is specified without a purpose name, the purpose name defaults to

'drawing'. There is no limit on the number of layers in the list. Note that any terminal layer used in

subsequent 'extract...' commands should be saved.

3.5.8 extractMOS(modelName, recLayer, gateLayer, diffLayer, bulkLayer=None,

isoLayer=None)

Extracts MOS devices with 3-5 terminals and creates instances of a cellView 'modelName layout' in

the extracted view. recLayer is the recognition layer of the gate region. gateLayer is the poly layer

and diffLayer is the source/drain diffusion layer. bulkLayer is the optional well layer; if present the

extracted instances have terminals D G S B. isoLayer is the optional isolation layer; if present the

extracted instances have terminals D G S B ISO. Otherwise 3 terminal devices with terminals D G S

are extracted. The layers gateLayer, diffLayer, bulkLayer and isoLayer must have previously been

saved using the saveInterconnect command.

The extracted instances have the property 'w' set to the recLayer shape width (length of gate

recognition shape edge coincident with diffLayer) and 'l' set to the distance between the coincident

diffLayer/gateLayer edges. Both manhattan and any-angle gates are supported. The recLayer shapes

should be a simple polygon without holes.

The cellview 'modelName’ ‘layout' will be created if it does not already exist. If it does exist, it is

assumed to be a PCell, and its ptlist property is set to the point list of the recognition region.

Example nmos/pmos cells with parameterised point lists are nmos_ex.py and pmos_ex.py.

3.5.9 extractMOSDevice(modelName, recLayer, [[gateLayer, termName],[S/DLayer,

termName,termName],[bulkLayer, bulkTermName] [isoLayer, isoTermName]])

As above but allows the terminal names of the gate, source, drain, bulk and iso terminals to be

specified. For example:

extractMOSDevice(‘nch6i’, ngatei6, [[poly, ‘G’], [ndiff, ‘S’,’D’], [psub,’B’],

[nwell,’ISO’]])

3.5.10 extractDMOS(modelName, recLayer, gateLayer, sourceLayer, drainlayer,

bulkLayer=None, isoLayer=None)

Extracts DMOS devices with 3-5 terminals and creates instances of a cellView 'modelName layout' in

the extracted view. recLayer is the recognition layer of the gate region. gateLayer is the poly layer,

sourceLayer is the source diffusion layer and drainlayer is the drain diffusion layer (different from

the source layer). bulkLayer is the optional well layer; if present the extracted instances have

terminals D G S B. isoLayer is the optional isolation layer; if present the extracted instances have

terminals D G S B ISO. Otherwise 3 terminal devices with terminals D G S are extracted. The layers

gateLayer, sourceLayer, drainlayer, bulkLayer and isoLayer must have previously been saved using

the saveInterconnect command.

The extracted instances have the property 'w' set to the recLayer shape width (length of gate

recognition shape edge coincident with drainLayer) and 'l' set to the distance between the

August 30,
2023

GLADE REFERENCE MANUAL

184

coincident drainLayer/gateLayer edges. Both manhattan and any-angle gates are supported. The

recLayer shapes should be a simple polygon without holes.

The cellview 'modelName’ ‘layout' will be created if it does not already exist. If it does exist, it is

assumed to be a PCell, and its ptlist property is set to the point list of the recognition region.

Example nmos/pmos cells with parameterised point lists are nmos_ex.py and pmos_ex.py.

3.5.11 extractDMOSDevice(modelName, recLayer, [[gateLayer, termName],[sourceLayer,

termName],[drainlayer, termName],[bulkLayer, bulkTermName] [isoLayer,

isoTermName]])

As above but allows the terminal names of the gate, source, drain, bulk and iso terminals to be

specified. For example:

extractDMOSDevice(‘nch6i’, ngatei6, [[poly, ‘G’], [nsource, ‘S’], [ndrain, ‘D’],

[psub,’B’], [nwell,’ISO’]])

3.5.12 extractRes(modelName, recLayer, termLayer, bulkLayer=None)

Extracts a 2 or 3 terminal resistor and creates instances of a cellView 'modelName layout' in the

extracted view. recLayer is the recognition layer for the resistor. termLayer is the layer of the resistor

terminals e.g. poly, and shapes on this layer should overlap or touch the recognition layer shape. The

layer termLayer must have previously been saved using the saveInterconnect command. If the

optional layer bulkLayer is specified, an additional bulk node is generated for the resistor model.

The extracted instances will have properties ‘w’ set the the recLayer width (length of recLayer edge

coincident with termLayer edge) and ‘l’ set to the recLayer length (total length of all recLayer edges

minus twice the width, then divided by two), ‘nsquares’ set to l/w, ‘nbends’ to the number of bends.

These properties can be accessed via an extraction PCell - see the example 'pres_ex.py' in the

distribution.

The cellview 'modelName layout' will be created if it does not already exist. If it does exist, it is

assumed to be a PCell, and its ptlist property is set to the point list of the recognition region. If a

PCell is used, its terminals are expected to be "A" and "B". A third terminal, on the bulk layer, is

possible and if used its terminal names is expected to be ‘BULK’.

3.5.13 extractResDevice(modelName, recLayer, [[termLayer, termName,

termName],[bulkLayer, termName]])

As above but allows the terminal names of the term layer and bulk layer(if used) to be specified.

3.5.14 extractMosCap(modelName, recLayer, gateLayer, diffLayer, bulkLayer)

Extracts a 2 terminal capacitor and creates instances of a cellView 'modelName layout' in the

extracted view. recLayer is the recognition layer for the capacitor. gateLayer and diffLayer form the

terminal layers of the capacitor, and these layers must have previously been saved using the

saveInterconnect command. If the optional layer bulkLayer is specified, an additional bulk node is

generated for the moscap model.

The extracted instances will have the properties area set the the recLayer area and perim set to the

recLayer perimeter.

August 30,
2023

GLADE REFERENCE MANUAL

185

The cellview 'modelName layout' will be created if it does not already exist. If it does exist, it is

assumed to be a PCell, and its ptlist property is set to the point list of the recognition region. If a

PCell is used, its terminals are expected to be "G" for the gate layer and "S" for the diff layer.

3.5.15 extractMosCapDevice(modelName, recLayer, [[gateLayer, termName],[S/DLayer,

termName],[bulkLayer,termName]])

As above but allows the terminal names of the gate, S/D and optional bulk layer to be specified.

3.5.16 extractDio(modelName, recLayer, anodeLayer, cathodeLayer, bulkLayer=None)

Extracts a 2 terminal diode and creates instances of a cellView 'modelName' layout in the extracted

view. recLayer is the recognition layer for the capacitor. anodeLayer and cathodeLayer form the

terminal layers of the diode, and shapes on these layers should overlap or touch the recognition

layer shape, and these layers must have previously been saved using the saveInterconnect

command. If the optional layer bulkLayer is specified, an additional bulk node is generated for the

diode model.

The extracted instances will have the properties ‘area’ set the the recLayer area and ‘pj’ set to the

recLayer perimeter.

The cellview 'modelName layout' will be created if it does not already exist. If it does exist, it is

assumed to be a PCell, and its ptlist property is set to the point list of the recognition region. If a

PCell is used, its terminals are expected to be "A" for the anode and "C" for the cathode.

3.5.17 extractDioDevice(modelName, recLayer, [[anodeLayer,

termName],[cathodeLayer,termName], bulkLayer,termName]])

As above but allows the terminal names of the anode, cathode and optional bulk layer to be

specified.

3.5.18 extractBjt(modelName, recLayer, emitLayer, baseLayer, collLayer,

bulkLayer=None)

Extracts a 3 terminal bjt and creates instances of a cellView 'modelName layout in the extracted

view. recLayer is the recognition layer for the bjt. emitLayer, baseLayer and collLayer form the

terminal layers of the bjt, and shapes on these layers should overlap or touch the recognition layer

shape, and these layers must have previously been saved using the saveInterconnect command. If

the optional layer bulkLayer is specified, an additional bulk node is generated for the diode model.

The extracted instances will have the properties ‘area’ set the the emitter recLayer area and ‘perim’

set to the recLayer perimeter.

The cellview 'modelName layout' will be created if it does not already exist. If it does exist, it is

assumed to be a PCell, and its ptlist property is set to the point list of the recognition region. If a

PCell is used, its terminals are expected to be "C" for the collector, "B" for the base and "E" for the

emitter.

3.5.19 extractBjtDevice(modelName, recLayer, [[emitLayer, termName],[baseLayer,

termName],[collLayer, termName],[bulkLayer, termName]])

As above but allows the terminal names of the emitter, base, collector and optional bulk layer to be

specified.

August 30,
2023

GLADE REFERENCE MANUAL

186

3.5.20 extractTFT(modelName, recLayer, gateLayer, diffLayer)

Extracts TFT (thin film) MOS devices and creates instances of a cellView 'modelName layout' in the

extracted view. recLayer is the recognition layer of the gate region. gateLayer is the poly layer and

diffLayer is the source/drain diffusion layer. The layers gateLayer and diffLayer must have previously

been saved using the saveInterconnect command. The gateLayer is normally the bottom metal1

plate and the diffLayer the top metal2 fingers.

The extracted instances have the property ‘w’ set to the recLayer shape width (length of gate

recognition shape coincident with diffLayer) and ‘l’ set to the distance between the coincident

edges. Both manhattan and any-angle gates are supported. The recLayer shapes should be simple

polygons without holes.

The cellview 'modelName layout' will be created if it does not already exist. If it does exist, it is

assumed to be a PCell, and its ptlist property is set to the point list of the recognition region. If a

PCell is used, its terminals are expected to be "D" for the drain, "S" for the source and "G" for the

gate.

3.5.21 extractTFTDevice(modelName, recLayer, [[gateLayer, termName],[S/DLayer,

termName, termName]])

As above but allows the terminal names of the gate, source and drain layers to be specified.

3.5.22 extractDevice(modelName, recLayer, [[termLayer1, term1Name, ...] [termLayer2,

term2Name, ...]]

Extracts a generic deviceand creates instances of a cellView 'modelName layout' in the extracted

view. The first letter of the modelName should correspond to the Spice device type e.g. R for a

resistor, C for a capacitor (case insensitive) etc. recLayer is the device recognition layer. The

termLayer(s) should be connection layers previously saved by the saveInterconnect command. Each

terminal layer can have one of more terminal names. Shapes on the terminal layer(s) that touch or

overlap the recognition layer will be created as terminals of the device. The recLayer shapes should

be a simple polygon without holes.

The cellview 'modelName layout' will be created if it does not already exist. If it does exist, it is

assumed to be a PCell, and its ptlist property is set to the point list of the recognition region.

3.5.23 extractParasitic(metLayer, areaCap, perimCap, ‘gndNetName’)

Extracts the parasitic capacitance of net shapes on layer metLayer. metLayer can be any layer in the

geomConnect() set of layers; for each (merged) shape on metLayer its area (in microns^2) and

perimeter (in microns) are calculated and multiplied by the values of areaCap and perimCap. An

instance of a capacitor is created (of size 100x100 database units so not normally visible) on one of

the vertices of the shape, with property 'c' set to the area * areaCap + perimeter * perimCap. The

capacitance will be connected to the shape's net and to the ground net specified by gndNetName.

3.5.24 extractParasitic2(metLayer1, met2Layer, areaCap, perimCap)

Extracts the parasitic capacitance of net shapes between layers met1Layer and met2Layer. The two

layers can be any layer in the geomConnect() set of layers; for each intersection of met1Layer and

met2Layer the area (in microns^2) and perimeter (in microns) are calculated and multiplied by the

August 30,
2023

GLADE REFERENCE MANUAL

187

values of areaCap and perimCap. An instance of a capacitor is created (of size 100x100 database

units so not normally visible) on one of the vertices of the shape, with property 'c' set to the area *

areaCap + perimeter * perimCap. The capacitance will be connected between the nets of the shapes

of each metal layer.

3.5.25 extractParasitic3(metLayer1, met2Layer, areaCap, perimCap, [layer1,...layerN])

Only extracts capacitance between metal1Layer and metal2Layer if shield layer(s) layer1... layerN

are not present between them. Note no checking is done for valid layers (yet). The two layers can be

any layer in the geomConnect() set of layers; for each intersection of met1Layer and met2Layer the

area (in microns^2) and perimeter (in microns) are calculated and multiplied by the values of

areaCap and perimCap. An instance of a capacitor is created (of size 100x100 database units so not

normally visible) on one of the vertices of the shape, with property 'c' set to the area * areaCap +

perimeter * perimCap. The capacitance will be connected between the nets of the shapes of each

metal layer.

3.5.26 extractParasitic3D(‘subsNetName’, ‘refNetName’, tol=0.01, order=-1, depth=-1)

Perform parasitic capacitance extraction using the Fastcap 3D field solver. subsNetName is the name

of the silicon substrate net; capacitances from conductor layers to the substrate plane will have this

net as one of their terminals. refNetName is the name of the reference net used by the field solver.

tol is an optional tolerance (fastcap -t option) and defaults to 0.01 i.e. 1%. order is an optional

parameter and corresponds to the fastcap option -o. By default (-1) fastcap automatically sets this. A

higher number e.g. 3 may be used e.g. if accuracy of net-net capacitance is small and fastcap gives

warning about non-negative values of the capacitance matrix. depth is the partitioning depth and

corresponds to the fastcap option -d. It defaults to fastcap automatically setting the value.

In order to extract parasitics for layers, they must be defined in the techFile with non-zero thickness.

An example:

METLYR metal1 drawing HEIGHT 0.890 THICKNESS 0.280 ;

VIALYR via1 drawing HEIGHT 1.170 THICKNES 0.450 ;

METLYR metal2 drawing HEIGHT 1.620 THICKNESS 0.370 ;

In the above, HEIGHT specifies the conductor height above the silicon surface and THICKNESS the

layer thickness. Dielectric constants are assumed to be 3.9 currently; the ability to set dielectric layer

thickness/permittivity may be added in future. Automatic meshing is performed to generate fastcap

compatible format input files. Each layer shape has conductors with a net name resulting from a

geomConnect() connectivity extraction. Capacitances are calculated by Fastcap as a matrix in which

the diagonal elements are the total capacitance for the conductor, and off-diagonal elements are the

capacitances between conductors. Capacitances are backannotated to the extracted view as

instances of a parasitic cap 'pcap'; netlisting the extracted view using File->Export CDL will allow a

spice compatible netlist to be generated.

In addition to the substrate net, a reference net refNetName is also created. Capacitances to this net

represent field lines from a conductor to infinity. For most usage this can be lumped to the substrate

net by a zero volt source connecting the two in your simulation testbench.

The temporary files produced by Glade are in Fastcap2 format, so another extractor could be used

that can read this format. Temp files are created in the current working directory, or in the directory

August 30,
2023

GLADE REFERENCE MANUAL

188

specified by the env var GLADE_FASTCAP_WORK_DIR. Temp files are normally deleted after

extraction is completed; the env var GLADE_NO_DELETE_TMPFILES can be set to keep them. Glade

expects is to find an executable called 'fastcap.exe' (windows) or 'fastcap' (Linux) in the same

directory as the glade executable.

Note that Fastcap is a field solver - and as such is not designed to handle large problems. Typically

cells with up to about 50 nets will extract in a resonable amount of time and memory .

4 LVS
Glade uses the Gemini graph isomorphism program to determine LVS errors. The flow is as follows:

- Run extraction on the layout view. The extraction rules must include geomConnect() to

assign connectivity. And ‘extracted’ view is created.

- Run LVS. The inputs to Gemini are a schematic netlist and an extracted view netlist. LVS will

write an extracted view netlist to a file <cellName>_extracted.cdl. For the schematic netlist,

either a schematic view can be used and this will be flattened if the schematic is hierarchical.

A schematic netlist file <cellName>_flat.cdl is produced. Alternatively a Spice/CDL netlist can

be read. See the Verify->LVS->Run command.

Gemini will compare the netlists and write the comparison results to <cellName>.lvs. It will also

highlight errors to the extracted view.

5 PCells

5.1.1 PCell Flow

PCells allow Glade to reuse layout of cellViews that may have differences – ‘parameterised cells’. The

layout for the cell is created by a script which takes the parameters as arguments. Note that Glade

PCells are NOT compatible with Cadence Skill-based PCells, or Synopsys PyCells.

The PCell scripting language in Glade is Python, the same as used to access the database and GUI.

When a PCell is compiled, it creates a master cellView known as a ‘supermaster’. The purpose of the

supermaster is to provide a cellView that can be instanced in a design. When the cellView is

instanced, a submaster cellView is created, which is unique by view of its parameter values.

Submasters are named of the form <supermaster_name>$$nnnnnnnn where nnnnnnnn is an unique

number created by hashing the parameter name/values etc. Submasters are normally hidden in the

library browser, as they should never be manipulated directly by the user. However there is an

environment variable, GLADE_DEBUG_SUBMASTERS, which can be set to make submasters visible in

the library browser.

5.1.2 An example PCell

An example of a MOS transistor PCell is as follows.

#--

NMOS Pcell example

Note: The first argument is always the cellView of the subMaster.

All subsequent arguments should have default values and will

August 30,
2023

GLADE REFERENCE MANUAL

189

be passed by name

#--

Import the db wrappers

from ui import *

The entry point. The name should match the superMaster.

def nmos(cv, w=1.1e-06, l=0.18e-06)

Some useful variables

lib = cv.lib()

dbu = lib.dbuPerUU()

width = int(w * 1.0e6 * dbu)

length = int(l * 1.0e6 * dbu)

Some predefined rules

cut = int(0.18 * dbu)

poly_to_cut = int(0.1 * dbu)

active_ovlp_cut = int(0.1 * dbu)

poly_ovlp_active = int(0.12 * dbu)

nplus_ovlp_active = int(0.2 * dbu)

metal_ovlp_cut = int(0.05 * dbu)

Create active

tech = lib.tech()

layer = tech.getLayerNum(‘active’, ‘drawing’)

r = Rect(int(-width/2),

int(-(active_ovlp_cut + cut + poly_to_cut + length/2)),

int(width/2),

int((active_ovlp_cut + cut + poly_to_cut + length/2)))

active = cv.dbCreateRect(r, layer);

bbox = Rect(active.bBox())

Create nplus

layer = tech.getLayerNum(‘nplus’, ‘drawing’)

r = Rect(int(bbox.left() - nplus_ovlp_active),

int(bbox.bottom() - nplus_ovlp_active),

int(bbox.right() + nplus_ovlp_active),

int(bbox.top() + nplus_ovlp_active))

cv.dbCreateRect(r, layer);

Create poly

layer = tech.getLayerNum(‘poly’, ‘drawing’)

p = Rect(int(-width/2-poly_ovlp_active),

int(-length/2),

int(width/2+poly_ovlp_active),

int(length/2))

gate = cv.dbCreateRect(p, layer)

net = cv.dbCreateNet("G")

pin = cv.dbCreatePin("G", net, DB_PIN_INPUT)

Create contacts

layer = tech.getLayerNum(‘cont’, ‘drawing’)

numCuts = width / (2 * cut)

c = Rect(int(-width/2 + active_ovlp_cut - cut * 2),

int(-(length/2 + poly_to_cut + cut)),

int(-width/2 + active_ovlp_cut – cut),

int(-(length/2 + poly_to_cut)))

for i in range(numCuts) :

c.offset(cut * 2, 0)

cv.dbCreateRect(c, layer)

c = Rect(int(-width/2 + active_ovlp_cut - cut * 2),

int((length/2 + poly_to_cut)),

int(-width/2 + active_ovlp_cut – cut),

int((length/2 + cut + poly_to_cut)))

for i in range(numCuts) :

c.offset(cut * 2, 0)

cv.dbCreateRect(c, layer)

Create metal

layer = tech.getLayerNum(‘metal’, ‘drawing’)

m = Rect(int(-width/2 + active_ovlp_cut - metal_ovlp_cut),

int(-length/2 - poly_to_cut - cut - metal_ovlp_cut),

August 30,
2023

GLADE REFERENCE MANUAL

190

int(width/2 - active_ovlp_cut + metal_ovlp_cut),

int(-length/2 - poly_to_cut + metal_ovlp_cut))

source = cv.dbCreateRect(m, layer)

net = cv.dbCreateNet(‘S’)

pin = cv.dbCreatePin(‘S’, net, DB_PIN_INPUT)

m = Rect(int(-width/2 + active_ovlp_cut - metal_ovlp_cut),

int(length/2 + poly_to_cut - metal_ovlp_cut),

int(width/2 - active_ovlp_cut + metal_ovlp_cut),

int(length/2 + poly_to_cut + cut + metal_ovlp_cut))

drain = cv.dbCreateRect(m, layer)

net = cv.dbCreateNet(‘D’)

pin = cv.dbCreatePin(‘D’, net, DB_PIN_INPUT)

Update the subMaster's bounding box

cv.update()

In the above example, we declare a function called 'nmos' which takes 3 arguments. The first

argument is always a cellView object, and should be called 'cv' (or at least a string containing the

substring 'cv'). The remaining arguments can be any desired parameters; they must all have default

values. This is so that if one of the parameters is missing, the default value can be used.

Note that you can pass a list of points to a Pcell. A list of points is defined in the standard Python

syntax, and can be set as a string property in the Add Property dialog e.g.

[[0,0],[1000,0],[1000,1000],[0,1000]]

Also note that all dimensions must be converted to database units (dbu). The dimensional quantities

(l, w in this case) should be passed as units of metres rather than microns if schematic driven layout

is used. This is so device W, L etc can be entered as ‘1.0u’ in schematics i.e. using SPICE compatible

multipliers. The functions e.g. Rect() take integer parameters, so int() is used to ensure this.

List type arguments can be specified, and the default values will be used to set the editor type in the

Query or Create Instance dialog. For example, if an argument is bv = [‘val1’, ‘val2’, ‘val3’] then the

PCell property will be displayed as a combobox with choices ‘val1’, ‘val2’, ‘val3’. The initial default

value of the property is the first value of the list.

5.1.3 Changing PCell arguments from within PCell code

If you change any of the PCell arguments within your code and want the instance properties

updated, you should save your properties e.g.

def nmos(cv, w=1.1e-06, l=0.18e-06)

a = w * l

cv.dbAddProp("a", a)

Why might you want to do this? If you create an extraction PCell (see e.g. rppoly_ex.py in the

distribution directory), you can include PCell arguments that you can to calculate and use for

netlisting. For example for the resistor, the PCell code computes 'r' from the extracted width, length,

number of bends and the resistor's sheet resistance in ohms/sq which can be hard coded into the

extraction PCell.

It is important to follow the above syntax carefully - do not add any whitespace to the PCell

argument list. All points must have an X and Y coordinate.

August 30,
2023

GLADE REFERENCE MANUAL

191

5.1.4 Using Python PCells

With the PCell code created, it should be saved to a file e.g. nmos.py - the .py extension is required,

and the name of the file, like the name of the function, must match the intended cellView name for

the PCell. Currently the python PCell files can reside in any directory, provided that directory is

included in the PYTHONPATH environment variable. Refer to Python documentation for more

details. Note that compiled python code (.pyc files) can be used if required.

Next, in Glade use the New Cell command to create the PCell supermaster.

Figure 173 - Create PCell supermaster

Click on the CellView is a Pcell button to enable the Pcell script field. The file chooser can be used to

select the name of the script file. This will create a new cellView for the PCell. Do not edit this cell - it

is solely for visual display of the results of the script, using default values for the arguments.

Alternatively, PCells can be loaded into Glade using the ui().loadPcell() command.

To place an instance of a PCell, use the Create Instance command to place the PCell instance.

Figure 174 - Create PCell Instance

August 30,
2023

GLADE REFERENCE MANUAL

192

First set the required PCell parameters. These are stored as properties on the instance, typically as

floats.

Figure 175 - Setting PCell Instance parameters

You use the Instance Properties tab on the Create Inst dialog to add properties.

To change the parameters of a PCell instance, for example to change its width, select the instance

and use the Query Properties dialog to modify the instance's properties. The Pcell will be updated

accordingly. Each instance of a PCell will create a superMaster cell - this cell is names according to

the PCell name, concatenated with a unique ID e.g. nch$$12345678.

5.1.5 Loading PCells using Python

PCells can be loaded in Python code, and instances of PCells can be created and their properties

changed. For example:

gui = cvar.uiptr

gui.importTech("default", "example.tch")

gui.loadPCell("default", "nch”)

lib = getLibByName("default")

cv = lib.dbOpenCellView("test", "layout", 'w')

origin = Point(0,0)

i = cv.dbCreatePCellInst("default", "nch", "layout", origin)

i.dbReplaceProp("w", 2.50e-6)

cv.dbUpdatePCell(i);

cv.update()

In the above, we create a library 'default' and load a PCell called ‘nch’ into the library. We then

create a cellView called 'test' and create a PCell instance in that cellView. Next we change the value

of the property 'w' to 2.5e-6. After changing any property or properties, we need to call

dbUpdatePCell(), giving it the PCell instance as the argument. Lastly the cellView is updated in the

database.

5.1.6 PCell Python API

See the cellView python bindings.

August 30,
2023

GLADE REFERENCE MANUAL

193

5.1.7 PCell debugging

It is possible to debug PCell python code using ‘pdb’, the Python debugger. Insert the line:

import pdb; pdb.set_trace()

into your PCell python code at the point where you want to break into the debugger (typically at the

start of the function). Then pdb will be entered with the prompt (Pdb).

An alternative way of debugging a PCell is as follows:

Import the pdb module :

import pdb

Import the PCell function (in this case nch from nch.py) :

import nch from nch

Open a cellView called ‘nch’

cvar.uiptr.openCellView(‘example’, ‘nch’, ‘layout’)

Call the function from pdb and break on entry (we give the

open cellView as the first argument, other args can be

given as required) :

pdb.runcall(nch, getEditCellView())

Enter pdb command in the command line. See e.g. https://realpython.com/python-debugging-pdb/

for debugging tips using pdb.

6 Symbol Creation

6.1.1 Selection Box

Symbols should have a selection box – a rectangle on the ‘boundary’ ‘drawing’ layer. This rectangle

defines the selection area when the symbol is placed in a schematic, rather than the bounding box of

the symbol (which may be large, for example if a lengthy text label is present). The selection box is

also used for dynamic highlighting in schematics.

6.1.2 Symbol Properties

Symbols need additional properties for netlisting.

"type" (string property), which can be one of the following:

• "mos" : a MOS device (NMOS, PMOS etc) corresponding to a Spice M element.

• "res" : a resistor, corresponding to a Spice R element.

• "cap" : a capacitor, corresponding to a Spice C element.

• “pcap” : a parasitic capacitor, corresponding to a Spice C element.

• "ind" : an inductor, corresponding to a Spice L element.

• "dio" : a diode, corresponding to a Spice D element.

• "bjt" : a bipolar device (NPN, PNP) corresponding to a Spice Q element.

• "fet" : a jfet, corresponding to a Spice J element.

• "pin" : a pin. The device is a pin instance.

https://realpython.com/python-debugging-pdb/

August 30,
2023

GLADE REFERENCE MANUAL

194

If no "type" property is present, then the device is assumed to be a hierarchical element

corresponding to a Spice X subcircuit call.

"NLPDeviceFormat" (string property). See below for NLP parser syntax.

"modelName" (string property) : a device model name associated with this device.

6.1.3 Pins

Symbols require pins, created using the Create->Pin… command.

6.1.4 Labels and NLP expressions

6.1.4.1 NLP syntax

NLP (Net List Property) syntax is used for labels with type NLPLabel, and for the hierarchical netlister.

An NLP expression is enclosed in square brackets. An NLP label can consist of multiple expressions

and other text, which is copied literally. Expressions must be delimited by whitespace. To add special

characters into an NLP expression, use backquoting. Currently \[(left square bracket), \] (right

square bracket), \s (space) and \n (newline) are supported.

• [@instName] evaluates to the name of the instance.

• [@libName] evaluates to the name of the instance library.

• [@cellName] evaluates to the name of the instance cell master.

• [@viewName] evaluates to the name of the instance master view.

• [@modelName] evaluates to the value of the instance master property

'modelName'.

• [@elementNum] evaluates to the number of the instance, if the instance name is of

the form <char><digits> (which is the default for instance creation)

• [@someName] evaluates to the value of the property 'someName' on the instance.

If the property is not found on the instance, then the instance master is checked for

the property.

An expression can have formatting information about the property. The syntax is

[@<propName>:<prefix>%<suffix>:<defaultValue>].

For example [@w:w=%u] with an instance property w of value 1.0 will evaluate to 'w=1.0u'.

[@w:w=%u:w=2.2u] with no property w will evaluate to 'w=2.2u'. If a defaultValue is not given then

the property will evaluate to a null string.

A linefeed character can be inserted into a NLP label expression using the sequence \n. For example:

[@w:w=%u\n:] [@l:l=%u\n:]

If the instance has properties w, l e.g. w=6u l=1u then the resulting display will be:

w=6u
l=6u

August 30,
2023

GLADE REFERENCE MANUAL

195

6.1.4.2 NLPDeviceFormat properties

A property with the name NLPDeviceFormat is used to control the schematic netlister. A

NLPDeviceFormat property on a symbol is a whitespace delimited sequence of NLP expressions:

• <string><expression> <string> <expression>...

• <string> is an arbitrary string of zero or more characters. Backquoted characters \n,

\[, \] are treated as a newline character and literal ‘[‘ or ‘]’ characters.

• <expression> is a NLP expression enclosed in square brackets and can be of the

form:

• [|<pinName>:%:<default>] where <pinName> is replaced by the name of the net

connecting to the named instance pin of an instance of the symbol. If the instance

does not have an instance pin with this name, then the expression evaluates to

<default>

• [@<propName>:<string>%:<default>] as for NLP labels.

• NLP expressions can contain whitespace e.g. [@dc: dc %:1]

• Bus pins are expanded when netlisting. So for example the NLP expression

[|DATA<0:3>:%] will expand to DATA<0> DATA<1> DATA<2> DATA<3>. This is to be

compatible with SPICE simulation which requires bus expansion into individual

signals.

For example an nmos device may have a NLPDeviceFormat property of:

M[@elementNum] [|D:%] [|G:%] [|S:%] [|B:%:gnd!] [@modelName] [@w:w=%u:w=2.0u]

[@l:l=%u:l=0.13u] [@m:m=%]

An extraction PCell for a mos device may have a NLPDeviceFormat property of:

[@instName] [|D:%] [|G:%] [|S:%] [|B:%] [@modelName] [@w:w=%] [@l:l=%]

Note that in the above, default values for the w and l properties are not specified, as the extraction

PCell will always have a value for these properties.

7 Schematic Creation
A library of symbols must exist in order to place and wire devices in the schematic. A library of

simple pins and power/ground symbols is provided in the 'basic' library. This is automatically loaded

when Glade starts. The 'basic' library is required by the Create Pin command in schematics.

Schematic entry and editing does not require any specific technology file information - schematics

use predefined system layers. For portability, it is recommended that the user does not use non-

system layers in schematics or symbols.

The typical steps involved in creating a schematic are as follows:

• Enter devices using the Create->Instance… command.

• Add pins for external connections using the Create->Pin… command.

• Add wires using the Create->Wire… command.

August 30,
2023

GLADE REFERENCE MANUAL

196

• Add solder dots, if required and not already added when creating wires, using the Create
Solder Dot command.

• Add wire labels if required using the Create Label… command.

• Run the Check or Check&Save command to extract the circuit connectivity and check the
schematic for connectivity errors.

• Exportt a (hierarchical) netlist for simulation or LVS.

7.1.1 Wiring

Schematics are wired using the Create->Wire… command. Note that it is not necessary to enter net

names during wiring; connectivity is created when running the Check command. The options dialog

(display using F3 if required) allows changing the entry direction, or using the autorouter (route

option). Wires connect to pins of devices or to other wires via their endpoints or using a solder dot.

Wires that cross do not connect with each other unless a solder dot is placed at their intersection.

Wires are named if they connect to I/O pins, or if they have a wire label placed on them. Else wires

will have a generated name of the form n0, n1, n2 etc. when the Check command is run.

7.1.2 Checking

Schematics need to be checked and saved before netlisting. The netlisters will compare the

lastExtracted property with the last modified property, and give an error if the schematic has not

been checked more recently than the last modification.

7.1.3 Netlisting, Switch and Stop Lists

Use the File->Export CDL… command to write a netlist of a schematic (or extracted view). The

NLPDeviceFormat property on the symbol masters controls how each instance is netlisted. When

netlisting a hierarchical schematic, the switch list allows control of what views are descended into

during netlisting, and the stop list sets the view(s) the netlister should stop descending and write as

instances in the netlist.

8 Simulation

Glade supports simulation initially from schematics. The currently supported simulators include:

• Xyce - A public domain Spice like simulator from Sandia Labs.

• Spice3f5 - A venerable simulator from the University of Berkeley.

8.1.1 Simulator installation

To download a prebuilt binary of the Xyce, go to the Xyce website at https://xyce.sandia.gov/ and
select Download. You need to register to get download access. Follow the installation instructions in
the documentation. You will need to make a note of the installation directory for use in the
simulation setup dialog below.

August 30,
2023

GLADE REFERENCE MANUAL

197

To download a prebuilt binary of Spice3f5, go to www.peardrop.co.uk/downloads and download the
Spice3f5 package for your OS.

8.1.2 Schematic simulation symbol library

The library 'XyceLib' supplied with Glade contains device primitives (resistors, capacitors, MOS,
bipolar, Jfet devices etc) for use in schematics you will simulate using Xyce.

8.1.3 Probing a schematic

You can use the Probe Window to set up probes for simulation plotting. A shortcut to entering nets
to probe is to right click on them.

August 30,
2023

GLADE REFERENCE MANUAL

198

A popup menu appears when you right click on a net and allows you to add a voltage probe for that
net, to clear an existing probed net or to clear all probed nets.

Similarly if you right click on a voltage source you can add a probe for its branch current:

Probes entered are shown in the probes window (Tools->Probe Window).

The first column of the probe window shows the expression passed to the simulator. So for probing
the voltage on node n5, the probe expression is v(n5). Double left clicking on the expression allows
you to edit it.

August 30,
2023

GLADE REFERENCE MANUAL

199

The second column shows the colour of the probe, as highlighted in the schematic, and shown in the
plot window. The text is the colour in hex rgb format. Double clicking on the entry allows you to
change the probe colour.

The third column shown the linestyle; double clicking again allows you to change this.

The fourth column shows the linewidth of the waveform in the plot window.

The + and - buttons allow you to add new probe expressions or delete existing ones manually. Note
that probe expressions do not necessarily correspond to node names and can be anything the
simulator supports.

8.1.4 Simulator Setup

The Simulation->Setup... menu sets the simulator runtime options and netlisting options.

Simulator sets the simulator name. It is a cyclic field of suppported simulators. Simulator Path is the
path to the simulator executable. The combination of simulator path and name is used to invoke the
simulator. Working Directory is the directory where e.g. netlisting and plot (rawfile) files are
generated. Glade reads Spice3-style rawfiles for plotting; if Ascii Rawfile? is checked, the rawfile will
be written in ascii, else it will be binary. Simulator Cmd Line Options are passed to the simulator on
invocation.

Netlister Switchlist is a whitespace delimited list of views that the netlister uses to switch into lower
leves of a schematic hierarchy. Netlister Stoplist is a whitespace delimited list of views that the
netlister will stop on and not descend further. Global Nets are nets which are added to the netlist as

August 30,
2023

GLADE REFERENCE MANUAL

200

.GLOBAL, i.e. common throughout the subcircuit hierarchy. NLP Property Name is the name of the
property that holds the netlister formatting string.

8.1.5 Transient Analysis

The Simulation->Run Transient Analysis command displays the transient analysis dialog.

Initial timestep value is the minimum initial timestep used for simulation. Note that Xyce has slightly
different meaning to this that e.g. Spice3; consult the Xyce user reference for details. Final Time
Value is the simulation end time. Start Time Value is the time at which simulation results are stored;
it is not the simulation starting time (which is always zero). Maximum Timestep is the maximum
allowed timestep during simulation. Use Initial Conditions makes use of device initial conditions at
the start of transient analysis. Use Step Analysis expands the form to allow a parameter to be
stepped over a range, with a transienet analysis for each value.

When Step Analysis is enabled, Sweep Type sets the type of the stepping - linear, decade or octave
stepping. Name is the name of the parameter to be stepped, and Start, Stop and Step control the
starting, stopping and step increment.

You can set up probes on nets before running transient analysis, and then the plot window will
automatically be opened with the probed nets (or sources) displayed.

August 30,
2023

GLADE REFERENCE MANUAL

201

8.1.6 AC Analysis

The Simulation->Run AC Analysis command displays the AC analysis dialog.

Sweep Type is the type of AC analysis; it can be Decade, Linear or Octave. Points is the number of
analysis points per decade or octave, or the total number of points for a linear sweep. Start
Frequency and Stop Frequency set the initial and final analysis frequencies. Use Step Analysis
expands the form to allow a parameter to be stepped over a range, with an AC analysis for each
value.

When Step Analysis is enabled, Sweep Type sets the type of the stepping - linear, decade or octave
stepping. Name is the name of the parameter to be stepped, and Start, Stop and Step control the
starting, stopping and step increment.

8.1.7 DC Analysis

The Simulation->Run DC Analysis command displays the DC analysis dialog.

August 30,
2023

GLADE REFERENCE MANUAL

202

Sweep Type is the type of DC analysis for the sweep varable 1, and can be Linear, Decade, Octave or
None. Name is the name of the first swept parameter. Start, Stop and Step set the starting, stopping
and increment values. If Two Variable Sweep is set, a second swept variable can be used.

If Two Variable Sweep is checked,the second sweep variable name, start, stop and increment can be
specified.

8.1.8 Plotting

The Simulation->Plot... command displays the plot window.

August 30,
2023

GLADE REFERENCE MANUAL

203

The plot window allows plotting node voltages, branch currents or expressions.

• File->Open Rawfile... opens a ascii or binary rawfile. Note that these are the same format as
e.g. Spice3, LTSpice etc. Once open, the dock window is populated with the names of the
expressions (node voltages, branch currents or expressions of these and/or other
parameters). You can add an expression to the chart by double clicking on its name, or right
clicking and select ‘Add’ from the popup menu.

• File->Copy to Clipboard copies the chart to the clipboard. You can then paste this into other
applications, e.g. MS Word, Paint etc.

• File->Print opens a file chooser dialog to save the file as a .png format, for printing or
inclusion in documentation.

• File->Exit exits the plot window.
• View->Fit (bindkey f) fits the simulation waveform(s) to the chart.
• View->Zoomin (bindkey z) zooms into the chart by a factor of 2.
• View->Zoomout (bindkey Shift+z) zooms out of the chart by a factor of 2.
• View->Scroll Left/Right/Up/Down (arrow bindkeys) scrolls the chart by about 20%.

The plot window auto scales plotted expressions to the chart area. The X axis variable is displayed in
the top of the dock window and defaults to ‘frequency’ for AC analysis, ‘time’ for transient analysis,
and the first sweep variable for DC analysis.

The mouse wheel zooms in/out of the chart.

August 30,
2023

GLADE REFERENCE MANUAL

204

Clicking on a waveform with the left mouse button displays a callout (like a speech bubble) with the
expression/variable name and X/Y values. You can have any number of callouts set, and they will be
maintained on zooming or panning. Note that you must click precisely on the waveform to generate
a callout.

Clicking with the right mouse button shows a popup menu that allows you to clear all callouts.

Right mouse button dragging zooms into a region of the chart. By default a rectangular area is
zoomed into. Holding the Shift key while dragging zooms in by X axis only; holding the Ctrl key while
dragging zooms in by Y axis only. Use View->Fit (f key) to reset the zoom.

The X axis and Y axis tabs allow chart X axis and Y axis to be controlled. The axis type can be Log or
Linear. By default the axes are auto scaled; however checking e.g. Xmin or Xmax allows entering
minimum/maximum limits for the axes. Major ticks and minor ticks are shown and automatically
chosen; they can be manually shown/hidden;, their linestyles chose and the number of ticks set (-1
signifies use the default settings).

The Misc tab allows control over whether a single chart is used by all waveforms (the default), or a
chart per waveform is 'Multiple Plots' is checked. Changing this option removes all plot expressions;
they can be re-added by clicking on their names in the Signal dock window. Show Data Points shows
the actual simulation data; else a spline fit to the data points is drawn.

9 Programming in Python
The entire Glade database and much of the UI is wrapped in Python using SWIG. This means you can

write Python scripts to automate tasks - PCells (parameterised cells) are a good example.

You can enter python commands directly at the command line. Some useful ones:

 getSelectedSet()

Returns a python list of the selected objects. You can print information about an object using the

print command:

 objs = getSelectedSet()
 for obj in objs :
 print obj

To get the current cellView displayed in the gui, use:

 cv = getEditCellView()

To access an open library, use:

 lib = getLibByName("myLib")

To open a cellView, use:

August 30,
2023

GLADE REFERENCE MANUAL

205

'r' opens an existing cell for read, 'a' opens an existing cell for edit, 'w' creates a new cell.
cv = lib.dbOpenCellView("myCell", "layout", 'a')

Some python bindings require arrays of coordinates. You can use the python

intarray(number_of_elements) function to create an array with a specified size. Or you can pass a

python list, with each list element being a list of x and Y coordinates:

[[0, 0], [1000, 0], [1000, 1000], [0, 1000]]

9.1 The command line interpreter
The message window at the bottom of the Glade main window is split into two parts: the message

pane, which shows messages and output from the Python interpreter. You can use the Right Mouse

Button to copy text from the message pane. Below the message pane is the command line. You can

type Python commands into the command line.

The Python command line supports various control characters to assist in typing in Python

commands:

• Left Arrow - move the cursor one character left.

• Right Arrow - move the cursor one character right.

• Up arrow - retrieve previous command (or clear line if no previous command)

• Down arrow - retrieve next command (or clear line if no next command)

• Home - move the cursor to the start of the line

• End - move the cursor to the end of the line

• Ctrl-A - select all text on the line

• Ctrl-C - copy the selected text to the clipboard

• Ctrl-V - paste the clipboard to the line

• Ctrl-X - delete the selected text

• Ctrl-Z - undo the last editing operation

• Ctrl-Y - redo the last editing operation

•

9.2 Writing Python scripts
An example of a Python script follows.. Don't forget that Python relies on indentation for e.g. for and

while loops!

 # Example python script
 print 'Starting script...'
 #
 # Create a new library, called 'fred'
 lib = library("fred")

August 30,
2023

GLADE REFERENCE MANUAL

206

 #
 # Create a new cellView in this library
 cv = lib.dbOpenCellView("test", "layout", 'w')
 #
 # A rectangle. By default database units are 0.001 micron
 width = 10000
 pitch = width * 2
 r = Rect(0, 0, 0, 0)
 #
 # Create four rectangles on layer 1
 layer = 1
 for i in range(2) :
 for j in range(2) :
 r.setLeft(j * pitch)
 r.setRight(j * pitch + width)
 r.setBottom(i * pitch)
 r.setTop(i * pitch + width)
 cv.dbCreateRect(r, layer);
 #
 # Update the cellView after creating any objects
 cv.update()
 #
 # Open the cellView for display
 ui().openCellView("fred", "test", "layout")
 #
 # Do a region query
 q = cv.bBox()
 objs = cv.dbGetOverlaps(q, layer)
 obj = objs.first()
 while obj :
 print 'found object ', obj.objName(), ' with origin = (', obj.left(), obj.bottom(), ')'
 obj = objs.next()
 #
 print 'Finished script...'

9.3 Python API
Python does not have type declarators like C/C++, so in this documentation the type of an argument

is shown by using its C++ notation, such as int, float, char* etc.

9.3.1 arc class

An arc is a portion of an ellipse and is derived from an ellipse. It is normally created by the cellView

dbCreateArc function.

setStartAngle(double angle)

August 30,
2023

GLADE REFERENCE MANUAL

207

Sets the arc start angle in degrees. Zero degrees is at the 3 o’clock position with respect to the

centre of the arc..

double startAngle()

Gets the arc start angle.

setSpanAngle(double angle)

Sets the arc span angle in degrees. The span is the angle from the start to end point of the arc.

double spanAngle()

Gets the arc span angle.

Rect bBox()

Gets the arc’s true bounding box. The arc bounding box is based on it’s parent class (ellipse), but

clipped to the arc extent.

dbtype_t objType()

Gets the arc object type, ARC.

const char* objName()

Gets the arc object name as “ARC”.

bool offGrid(int grid)

Returns true if the radius of the arc is offgrid.

transform(transform & trans)

Transforms this arc by trans.

August 30,
2023

GLADE REFERENCE MANUAL

208

Move(cellView *dest, Point delta, bool opt=True)

Move the arc origin by delta in the cellView given by dest. If opt is true then the database is re-

optimised for the new array position. If there are a lot of objects to move it makes sense to turn this

off and instead use the cellView update() function after moving them all.

dbObj * Copy(cellView *dest, Point delta, int layer=-1)

Copy the arc. dest is the destination cellView, delta is the offset from the current origin. If layer is

non-negative, the arc is copied to the layer number. Returns the copied object.

dbObjList<dbObj> * Flatten(cellView *dest, transform trans, bool hier=True)

Flatten the arc into the cellView dest, with the given transform trans, and return a dbObjList of the

flattened objects.

9.3.2 array class

An array is a reference to an array of cellViews, in another cellView. Arrays correspond to GDS2

AREFs. Arrays are created using the dbCreateArray cellView function. An array is derived from the

inst class.

numRows(int rows)

Set the number of rows rows of this array.

int rows()

Get the number of rows for this array.

numCols(int cols)

Set the number of columns cols for this array.

int cols()

Get the number of columns for this array.

August 30,
2023

GLADE REFERENCE MANUAL

209

rowSpacing(int spacing)

Set the row spacing. This can be positive or negative.

int rowSpacing()

Get the row spacing.

colSpacing(int spacing)

set the column spacing for this array. This can be positive or negative.

int colSpacing()

Get the column spacing.

int left()

Get the left edge of the array's bounding box.

int bottom()

Get the bottom edge of the array's bounding box.

int right()

Get the right edge of the array's bounding box.

int top()

Get the top edge of the array's bounding box.

bool offGrid(int grid)

Checks if an array origin is on the grid grid, which is in database units.

August 30,
2023

GLADE REFERENCE MANUAL

210

orient(orient_t orient)

Set the array orientation. orient can be one of: R0, R90, R180, R270, MX, MXR90, MY, MYR90.

orient_t orient ()

Get the array orientation.

bound(bool b)

Set the array binding. This should probably not be set by the user.

bool bound()

Get the instance binding status. An array is bound if it references a valid master.

double mag()

Get the array magnification. Magnifications other than 1.0 are supported, but their use is

deprecated.

char* libName()

Get the array's lib name.

library * lib()

Get the array's library pointer.

char* cellName()

Get the array's master cell name.

cellName(const char *name)

Set the array master's cell name.

August 30,
2023

GLADE REFERENCE MANUAL

211

char* viewName()

Get the array's view name.

viewName(const char* name)

Set the array’s view name.

instName(cellView *cv, const char *instName)

Set the array's instName. cv is the cellView containing the instance.

char * a.instName()

Get the array's instName.

cellView * getMaster()

Get the cellview of the array's master.

setMaster(cellView *cv)

Set the array's master cellView.

Point & origin()

Get the origin of the array. Note that an array's origin does not have to be e.g. the lower left of its

bounding box - it can be anywhere.

origin(Point &p)

origin(int x, int y)

Set the origin of the array.

Rect bBox()

August 30,
2023

GLADE REFERENCE MANUAL

212

Get the array's bounding box.

dbtype_t objType()

Returns the objects type as ARRAY

const char* objName()

Returns the object name i.e. "ARRAY"

int getNearestEdge(Point &p, segment &edge)

Returns the distance to the nearest edge of this object to a Point p. edge is the nearest segment.

Rect getBoundary()

Returns the boundary shape rectangle (e.g. for a symbol or abstract view) if it exists; if not the

master's bounding box.

transform(transform & trans)

Transform the array by the given transform trans.

scale(double scalefactor, double grid)

Scale the array origin coordinates by scalefactor, snapping to grid.

Move(cellView *dest, Point delta, bool opt=True)

Move the array origin in cellView dest by delta. If opt is true then the database is re-optimised for

the new array position. If there are a lot of objects to move it makes sense to turn this off and

instead use the cellView update() function after moving them all.

dbObj * Copy(cellView *dest, Point delta)

Copy the array. dest is the destination cellView, delta is the offset from the current origin.

August 30,
2023

GLADE REFERENCE MANUAL

213

dbObjList<dbObj> * Flatten(cellView *dest, transform &trans)

Flatten the array into the cellView dest, with the given transform trans, and return a dbObjList of the

flattened objects.

instPin * dbCreateInstPin(net *n, const char *name)

Create an instance pin on this array for the net n and pin name name.

dbDeleteInstPin(net * n, const char* pinName)

dbDeleteInstPin(instPin *ip)

Delete the instPin ip from this array.

instPin * dbFindInstPinByName(const char *name)

Find the inst pin with name name on this array. Returns null if not found.

dbObjList<instPin> * getInstPins()

Get a dbObjList of all instPins for this array.

[list] getInstPins()

Get a python list of the array’s instPins.

int num = a.getNumInstPins()

Get the number of instPins for this array.

int layer()

Get the array’s layer (TECH_INSTANCE_LAYER)

August 30,
2023

GLADE REFERENCE MANUAL

214

9.3.3 cell class

The cell class represents a cell, which can have multiple representations (views). A library contains a

list of cells and a list of views. A combination of a unique cell and view is a cellView. Cells are

normally automatically created by the library function dbOpenCellView(). A cell is derived from a

dbObj, so may have properties.

dbObjList<cellView> * cellViews()

Get a dbObjList of the cellViews for this cell.

[list] getCellViews()

Gets a Python list of the cellViews for this cell.

name(const char *s)

Sets the cell name.

const char * name()

Gets the cell's name.

addCellView(cellView *cv)

Adds a cellView cv to the cell's cellView list.

cellView * dbFindCellViewByView(const char *viewName)

Finds the cellView for this cell with view name viewName. If it does not exist, None is returned.

dbtype_t objType()

Returns the object's type (CELL).

const char* objName()

August 30,
2023

GLADE REFERENCE MANUAL

215

Returns the object's print name ("CELL").

9.3.4 cellView class

A cellView stores design data. It is a unique combination of a cell and a view. CellViews correspond

to GDS2 STRUCTs, LEF MACROs or a DEF DESIGN. CellViews are stored in a library. CellView access

functions are as follows. Note that all coordinate values are expected in database units. To find the

number of database units per micron, use the library function dbuPerUU().

9.3.4.1 Creating or opening cellViews

A cellView is created using the library function:

cellView * dbOpenCellView(const char *cellName, const char *viewName, char mode)

Create a cellView in an existing library with cell cellName and view viewName. The function returns a

cellview. mode is a single character denoting the access mode; 'r' signifies readonly access, 'w'

signifies write access (the cellview should not already exist and will be created), and 'a' signifies

append access (the cellview already exists and is opened for modification). Note that after creating a

new cellView and any objects in it, update() must be called to build the data structures before

editing/viewing/querying.

9.3.4.2 Creating objects in a cellView

A cellView contains shape and instance/array objects. Shape objects are created on a specified layer

number, which is internally represented by a signed 16 bit integer value. To get a layer number given

a layer name and purpose, you can use the techFile class functions to get and manipulate layers e.g:

layer = tech.getLayerNum(layerName, purposeName)

arc * dbCreateArc(const Point &origin, int xRadius, int yRadius, double startAngle, double

spanAngle, int layer)

Create an arc with the specified origin, Xradius and Yradius on layer. The arc is part of an ellipse with

the specified startAngle and spanAngle. startAngle is the angle the arc starts on. Zero degrees

corresponds to 3 o’clock. spanAngle is the angle increment from the startAngle.

array * dbCreateArray(const char *libName, const char *cellName, const char *viewName, const

Point &origin, orient_t orient, double mag, int numRows, int numCols, int rowSpacing, int

colSpacing, const char *instName=null)

Create an array in the cellView and returns the array created. The array master cellView is specified

by libName, cellName and viewName. The array's origin is given by origin and its orientation by

orient. The enumerations R0, R90, R180, R270, MX, MXR90, MY, MYR90 can be used tp specify the

orientation. Orientations other than variants of 90 degrees are not supported. The magnification is

August 30,
2023

GLADE REFERENCE MANUAL

216

specified by mag. If specified, instName is used to name the instance; else the instance name is

autogenerated with the first being I0, then I1, I2 etc. numRows specifies the number of rows and

must be greater than 0. numCols specifies the number of columns and must be greater than 0.

rowSpacing is the spacing between rows and can be negative or positive, as can colSpacing.

array * dbCreateArray(library *lib, const char *cellName, const char *viewName, const Point

&origin, orient_t orient, double mag, int numRows, int numCols, int rowSpacing, int colSpacing,

const char *instName=null)

Create an array in the cellView and returns the array created. This is identical to the above but takes

a library *, rather than a library name, as argument. The array master cellView is specified by

libName, cellName and viewName. The array's origin is given by origin and its orientation by orient.

The enumerations R0, R90, R180, R270, MX, MXR90, MY, MYR90 can be used tp specify the

orientation. Orientations other than variants of 90 degrees are not supported. The magnification is

specified by mag. If specified, instName is used to name the instance; else the instance name is

autogenerated with the first being I0, then I1, I2 etc. numRows specifies the number of rows and

must be greater than 0. numCols specifies the number of columns and must be greater than 0.

rowSpacing is the spacing between rows and can be negative or positive, as can colSpacing.

ellipse * dbCreateCircle(const Point &origin, int radius, int layer)

Create a circular ellipse, i.e. one with the same X and Y radius.

ellipse * dbCreateEllipse(const Point &origin, int xRadius, int yRadius, int layer)

Create an ellipse with given origin (the centre of the ellipse), xRadius, yRadius and layer number.

group * dbCreateGroup(const char* name, const Point & origin, orient_t orient)

Creates a group with name name, origin at origin, and orientation orient.

polygon * dbCreateHole(int *x, int *y, int numPoints, int layer, shape *source=NULL)

Creates a hole in a shape . The hole to be 'cut' is represented by the arrays x and y of size numPoints.

The shape to be cut is on layer lyr. If obj is non-null, it is assumed to be the shape to cut the hole in;

if null, the largest shape on layer lyr that overlaps the hole will be cut.

If multiple holes are to be created in a single shape, then the holes should be sorted in X (and then Y)

before calling these functions.

August 30,
2023

GLADE REFERENCE MANUAL

217

polygon * dbCreateHole([] ptlist, int numPoints, int lyr, shape *source= NULL)

Creates a hole in a shape . The hole to be 'cut' is represented by the polygon defined by the python

list ptlist and numPoints. The shape to be cut is on layer lyr. If source is non-null, it is assumed to be

the shape to cut the hole in; if null, the largest shape on layer lyr that overlaps the hole will be cut.

polygon * dbCreateHole(shape * hole, shape *source)

Creates a polygonal hole defined by shape hole, which can be a polygon, rectangle, ellipse or path.

source is the shape to be cut.

HSeg * dbCreateHSeg(int x1, int y1, int x2, int y2, int layer, net *n, int width=0, int

style=DB_TRUNCATED)

A HSeg is a horizontal track segment. HSegs are a memory efficient way of representing a two point

path with a given layer that has a fixed width and style, and as such are used in representing

DEF regular net routing. This function creates a HSeg object in the cellView and returns the HSeg

created. (x1, y1) is the first point of the HSeg, (x2, y2) is the second point. layer is the layer the HSeg

is created on. width is the HSeg width (defaults to 0) and style is the HSeg's path style (defaults to

truncated). If the cellView's library does not contain a segparam index for the HSeg with matching

layer and width/style, one is created.

inst * dbCreateInst(const char *libName, const char *cellName, const char *viewName, co nst

Point &origin, orient_t orient, double mag, const char *instName=null)

Create an inst in the cellView and returns the instance created. The instance master cellView is

specified by libName/cellName/viewName. The instance's origin is given by origin and its orientation

by orient. The enumerations R0, R90, R180, R270, MX, MXR90, MY, MYR90 can be used to specify

the orientation. Orientations other than variants of 90 degrees are not currently supported. The

magnification is specified by mag. If specified, instName is used to name the instance; else the

instance name is autogenerated with the first being I0, then I1, I2 etc.

inst * dbCreateInst(library *lib, const char *cellName, const char *viewName, const Point &origin,

orient_t orient, double mag, const char *instName=null)

Create an inst in the cellView and returns the instance created. This is identical to the above but

takes a library, rather than a library name, as argument. The instance master cellView is specified by

cellName/viewName. The instance's origin is given by origin and its orientation by orient. The

enumerations R0, R90, R180, R270, MX, MXR90, MY, MYR90 can be used to specify the orientation.

Orientations other than variants of 90 degrees are not currently supported. The magnification is

August 30,
2023

GLADE REFERENCE MANUAL

218

specified by mag. If specified, instName is used to name the instance; else the instance name is

autogenerated with the first being I0, then I1, I2 etc.

label * dbCreateLabel(const Point &origin, char *name, int orient, double height, int presentation,

int layer)

Creates a label in the cellView at location origin with text name and returns the label created. The

orientation of the label is given by orient and the label height by height. presentation is the

alignment of the text label and layer is the label's layer.

line * dbCreateLine(const Point & p1, const Point & p2, int layer)

Creates a line in the cellView with vertices defined by points p1 and p2 on layer layer and returns the

line created.

line * dbCreateLine(int *x, int *y, int numPoints, int layer)

Creates a line in the cellView with vertices defined by intarrays x and y with size numPoints on layer

layer and returns the line created.

line * dbCreateLine([] ptlist, int numPoints, int layer)

Creates a line in the cellView with vertices defined by the python list ptlist, which is a list of points.

Each point is a list of x and y coordinates. numPoints is the number of points. The line is created on

layer layer.

mpp * dbCreateMPP(int *xpts, int *ypts, int nPoints)

Creates a mpp (MultiPartPath) in the cellView and returns the mpp created. The intarrays xpts and

ypts are the X and Y coordinates of the path. numPoints specifies the number of points.

mpp * dbCreateMPP([] ptlist, int nPoints)

Creates a mpp (MultiPartPath) in the cellView and returns the mpp created. The python list pts is the

coordinates of the path. nPoints specifies the number of points.

 poly = cv.dbCreateMPP([[0,0],[1000,0],[1000,1000],[0,1000]], 4)

August 30,
2023

GLADE REFERENCE MANUAL

219

mpp * dbCreateMPP(const char *ruleName, ptlist, int nPoints)

Creates a mpp (MultiPartPath) in the cellView using the specified rule ruleName and returns the

mpp created. The python list ptlist is the coordinates of the path. nPoints specifies the number of

points. ruleName is the name of the (existing) mpp rule, as defined in the techFile.

path * dbCreatePath(int *xpts, int *ypts, int numPoints, int layer, int width, int style, int

beginExtent, int endExtent)

Create a path object in the cellView and returns the path created. The intarrays xpts and ypts are the

X and Y coordinates of the path. numPoints specifies the number of points and layer the layer the

polygon is created on. width is the width of the path and style the path style (0 = TRUNCATE, 1 =

ROUND, 2 = EXTEND, 4 = VAREXTEND, 8 = OCTAGONAL). If the path style is type 4, varExtend, then

beginExtent and endExtent specify the path extension beyond the beginning and ending points.

path * dbCreatePath([] ptlist, int numPoints, int layer, int width, int style, int beginExtent, int

endExtent)

Create a path object in the cellView and returns the path created. The python ptlist is a list of points,

each of which is a list of x and y coordinates of the point. numPoints specifies the number of points

and layer the layer the polygon is created on. width is the width of the path and style the path style

(0 = TRUNCATE, 1 = ROUND, 2 = EXTEND, 4 = VAREXTEND, 8 = OCTAGONAL). If the path style is type

4, varExtend, then beginExtent and endExtent specify the path extension beyond the beginning and

ending points.

polygon * dbCreatePolygon(int* xpts, int* ypts, int numPoints, int layer, bool use_poly = False)

Create a polygon object in the cellView and returns the polygon created. The intarrays xpts and ypts

are the X and Y coordinates of the polygon and should be created in python using the intarray()

function. numPoints specifies the number of points and layer the layer the polygon is created on. If

use_poly is False (the default), a rectangle will be created instead of a polygon if possible.

For example to create a triangle on layer 3:

numPoints = 3
x = intarray(numPoints)
y = intarray(numPoints)
x[0] = 0
y[0] = 0
x[1] = 2000
y[1] = 0
x[2] = 0
y[2] = 2000
layer = 3
poly = cv.dbCreatePolygon(x, y, numPoints, layer)

August 30,
2023

GLADE REFERENCE MANUAL

220

polygon * dbCreatePolygon(Point *pts, int numPoints, int layer, bool use_poly = False)

Creates a polygon using a Point * array of points.

polygon * dbCreatePolygon([] ptlist, int numPoints, int layer, bool use_poly = False)

Similar to the above, but uses a python list of points, each of which is a list of x and y coordinates of

the point.

poly = cv.dbCreatePolygon([[0,0],[1000,0],[1000,1000],[0,1000]], 4, 3)

rectangle * dbCreateRect(const Rect & box, int layer, bool use_rect = False)

Creates a rectangle object in the cellView with bounding box box and on layer layer and returns the

created rectangle. If use_rect is false (the default), a square will be created instead of a rectangle if

the box width equals the box height.

For example to create a rectangle on layer 3:

box = Rect(0, 0, 1000, 2000)
layer = 3
cv.dbCreateRect(box, layer

rectangle * dbCreateRect(int* x, int* y, int layer, bool use_rect = False)

Creates a rectangle using arrays of 4 integer coords x and y.

viaInst * dbCreateViaInst(char *name, const Point &origin, orient_t orient = R0)

Creates a viaInst of a via with master name, origin origin and oriention orient and returns the viaInst

created.

VSeg * dbCreateVSeg(int x1, int y1, int x2, int y2, int layer, net *n, int width=0, int

style=DB_TRUNCATED)

A VSeg is a vertical track segment. VSegs are a memory efficient way of representing a two point

path with a given layer that has a fixed width and style, and as such are used in representing DEF

regular net routing. This function creates a VSeg object in the cellView and returns the VSeg created.

(x1, y1) is the first point of the VSeg, (x2, y2) is the second point. layer is the layer the VSeg is created

on. width is the VSeg width (defaults to 0) and style is the VSeg's path style (defaults to truncated). If

August 30,
2023

GLADE REFERENCE MANUAL

221

the cellView's library does not contain a segparam entry for the VSeg, one will be created with

matching layer and width/style, one is created.

group * dbFindGroupByName(const char* name)

Gets a group with name name if it exists, or NULL if it is not found.

inst * dbFindInstByName(const char* name)

Finds the instance with name name in the cellView and returns it, or null if not found.

inst * dbFindInstByNameNoCase(const char* name)

Finds the instance with case insensitive name name in the cellView and returns it, or null if not

found.

dbObjList<inst> * dbFindInstsByRegExp(const char* regexp)

Finds instances with using the regular expression regexp in the cellView and returns a dbObjList.

[] getInstsByRegExp(const char *regexp)

Finds instances with using the regular expression regexp in the cellView and returns a Python list

9.3.4.3 Creating connectivity in a cellView

A cellView can also contain connectivity, such as nets, pins and ports (physical pin shapes).

net * dbCreateNet(const char *name)

Creates a net in the cellView with name name and returns the net created. If the net already exists in

the cellView, the net is not created.

net * dbFindNetByName(const char *name)

Finds the net with name name in the cellView and returns it, or null if not found.

net * dbFindNetByNameNoCase(const char *name)

August 30,
2023

GLADE REFERENCE MANUAL

222

Finds the net with case insensitive name name in the cellView and returns it, or null if not found.

dbObjList<net > * dbFindNetsByRegExp(const char* regexp)

Finds nets with using the regular expression regexp in the cellView and returns a dbObjList.

[] getNetsByName(const char *regexp)

Finds all nets matching regular expression regexp in the cellView and returns a Python list.

pin * dbCreatePin(const char *name, net *n, db_PinDirection dir)

Creates a logical pin in the cellView with name name and direction dir for the net n and returns the

pin created. The net n must exist in the cellView.

pin * dbFindPinByName(const char *name)

Finds the pin with name name in the cellView and returns it, or null if not found.

pin * dbFindPinByNameNoCase(const char *name)

Finds the pin with case insensitive name name in the cellView and returns it, or null if not found.

dbObjList<pin > * dbFindPinsByRegExp(const char* regexp)

Finds pins with using the regular expression regexp in the cellView and returns a dbObjList.

[] getPinsByName(const char* name)

Finds all pins matching regular expression regexp in the cellView and returns a Python list.

dbCreatePort(pin * p, shape * shp)

Creates a port for a pin p. A port is a physical representation of a pin so a valid shape shp must be

specified.

August 30,
2023

GLADE REFERENCE MANUAL

223

dbMergeNet(net *&from, net *to)

Merges the net from into net to. All shapes have their connectivity reassigned to the to net; the from

net is deleted from the cellView.

9.3.4.4 Creating and updating PCell instances in a cellView

PCell (programmable cell) instances can be created in a cellView. See also loadPCell.

inst * dbCreatePCellInst(const char *libName, const char *cellName, const char *viewName, const

Point & origin, int orient=R0, int numRows=1, int numCols=1, int rowSpacing=0, int colSpacing=0)

Create an instance of a PCell in the cellView and returns the instance created. The PCell master must

have been previously created e.g. by a call to ui::loadPCell(). libName is the library name containing

the pcell, cellName is the cellView name of the PCell and viewName is the view name of the PCell.

origin is the instance's origin. If specified, orient is the instance's orientation, otherwise defaulting to

R0. If numRows or numCols are not 1, an array is created of PCells.

inst * dbUpdatePCell(inst *originalInst)

Updates a PCell instance after any of its properties have been changed. This is equivalent to querying

the PCell instance properties in the GUI and changing them. Note that the originalInst is destroyed,

and newInst is created.

If you change your PCell python code and wish to update all existing instances of the PCell in a

cellView, you can use this function.

 cv = getEditCellView()
 iter = instIterator(cv)
 while not iter.end() :
 inst = iter.value()
 newInst = cv.dbUpdatePCell(inst)
 print ‘Updating ‘, inst.instName(), ‘ to ’, newInst.instName()
 iter.next()
 #

9.3.4.5 Searching for objects in a cellView

dbObjList<dbObj> * dbGetOverlaps(const Rect &box, int layer, bool allLayers=False, bool

instsToo=False, bool viaInstsToo=False)

Searches the area given by box for any objects whose bounding boxes overlap the area. If allLayers is

0, then shapes on only the specified layer are returned. If allLayers is 1, shapes on all layers are

searched. If instsToo is 1, any instances whose bounding box overlaps the area are returned in

addition to any valid shapes, similarly is viaInstsToo is 1 then any via insts that overlap are also

checked. It is the user’s responsibility to delete the returned dbObjList list.

August 30,
2023

GLADE REFERENCE MANUAL

224

dbGetOverlaps(dbObjList<dbObj> &list, const Rect &box, int layer, bool allLayers=False, bool

instsToo=False, bool viaInstsToo=False)

As dbGetOverlaps, but appends objects found to list.

[] getOverlaps(const Rect &box, int layer, bool allLayers=False, bool instsToo=False, bool

viaInstsToo=False)

As above, but returns a Python list of dbObjs.

dbGetHierOverlaps(dbObjList<dbHierObj> &list , const Rect &box, int layer, bool allLayers = False,

int level = 99)

Searches the area given by box for any objects whose bounding boxes overlap the area. If allLayers is

0, only the shapes on the specified layer are returned. If allLayers is 1, shapes on all layers are

searched. The search is carried out hierarchically up to level levels deep.

A dbHierObj is a simple class containing the object itself, the cellView containing the object and the

transform of the object relative to the top level.

[] getHierOverlaps(const Rect &box, int layer, bool allLayers = False, int level = 99)

As above, but returns a Python list of dbHierObjs .

9.3.4.6 cellView utility functions

userUnits userUnits()

Returns the user units as inches or microns.

userUnits(units)

Sets the user units. units can be either inches or microns.

int dbuPerUU()

Returns the number of database units per user unit. The default number of dbu is 1000 if user units

are microns, and 160 if user units are inches.

August 30,
2023

GLADE REFERENCE MANUAL

225

dbuPerUU(dbu)

Sets the database units per user unit.

updateBbox()

Updates the cellView's bounding box to enclose all objects it contains. This function is deprecated

and update() should be used.

optimiseTrees()

Build the internal data structures for the cellView, or updates them. This must be called after

creating any objects in a new cellView, but before viewing / editing / querying the cellView. This

function is deprecated and update() should be used.

update()

Calls updateBbox(), optimiseTrees(), sets the cellView as edited and sets the modification date. This

should be called after a modification, or a set of modifications, to the cellView. For perfomance

reasons it is better to call this after a set of operations rather than for each operation.

Rect bBox()

Get the bounding box of the cellView as a Rect.

clearBbox()

Resets the cellView bounding box to (0,0) (0,0).

bBox(Rect box)

The existing cellView bounding box becomes the union of the current bounding box and box.

Rect getBoundary()

Gets the cellView boundary rectangle, if such a shape exists on the boundary drawing layer.

August 30,
2023

GLADE REFERENCE MANUAL

226

dbDeleteObj(dbObj *object, bool reallyDelete=True, bool opt=True)

Delete the database object object. If reallyDelete is true, the object is deleted, else it is just removed

from the object trees (and hence undoing the delete is possible). If opt is true, the tree is

(re)optimised after the delete.

int getNumShapes()

Get the number of shapes in the cellView.

int getNumShapes(int lyr)

Gets the number of shapes on a specific layer, where lyr is the layer number.

int getNumInsts()

Get the number of instances in the cellView.

int getNumViaInsts()

Get the number of viaInsts in the cellView.

Int getNumNets()

Get the number of nets in the cellView.

int getNumPins()

Get the number of pins in the cellView.

library * lib()

Get the cellView ‘s library.

bool isPCell()

August 30,
2023

GLADE REFERENCE MANUAL

227

returns true if the cellView is a PCell superMaster.

bool isSubMaster()

Returns true if the cellView is a PCell subMaster.

const char* cellName()

Get the cellView's name.

const char* viewName()

Get the cellView's viewname.

dbObj * getNearestObj(Point p, int dist)

Get the nearest object to a point p in the cellView , up to a maximum distance dist.

lpp * getLpp(int layer)

Get the layer-purpose pair with layer number layer in this cellView.

bool deleteLpp(lpp *l)

Delete the layer-purpose pair l in this cellView. All objects (shapes, insts and viaInsts) on that lpp will

be deleted.

[] getLpps()

Returns a Python list of all layer-purpose pairs in the cellView. This is a python wrapper created using

the SWIG %extend function.

[] getInsts()

Returns a Python list of all instances in the cellView. This is a python wrapper created using the SWIG

%extend function.

August 30,
2023

GLADE REFERENCE MANUAL

228

[] getNets()

Returns a Python list of all nets in the cellView. This is a python wrapper created using the SWIG

%extend function.

[] getPins()

Returns a Python list of all pins in the cellView. This is a python wrapper created using the SWIG

%extend function.

An example of using the access functions to create text labels on pins follows.

 # script to create labels from pins
 #
 # Get the current edit cellView, lib and technology
 cv = getEditCellView()
 lib = cv.lib()
 tech = lib.tech()
 #
 # Get desired pin layer
 lyr = tech.getLayerNum(‘text’, ‘drawing’)
 #
 # Iterate over all top level pins
 #
 pins = cv.getPins()
 for pn in pins :
 name = pn.name()
 # Get the pin shapes and iterate over them
 shapes = pn.getPorts()
 for shp in shapes :
 box = shp.bBox()
 origin = box.centre()
 cv.dbCreateLabel(origin, name, R0, 1.0, centreCentre, lyr)
 # end while
 # end while
 #
 # commit edits
 cv.update()

shape * roundCorners(shape *shp, int inner_radius, int outer_radius, int segs, double grid)

Rounds the shape shp with the radius given in dbu, using a minimum number of segments segs, and

snaps the vertices of the curve to grid in microns. inner_radius is the radius of inner (concave)

corners; outer_radius is the radius of outer (convex) corners.

August 30,
2023

GLADE REFERENCE MANUAL

229

9.3.4.7 Iterators

Instead of using getInsts/getNets/getPins/getLpps it is possible to use iterators in Python:

iter = instIterator(cellView *cv)

Initialises the inst iterator for the cellView. For example:

cv = getEditCellView()
iter = instIterator(cv)
while not iter.end() :

inst = iter.value()
name = inst.instName()
print ‘inst name = ‘, name
iter.next()

iter.next()

Advances the iterator to the next instance.

bool iter.end()

Returns false if there are more instances, else returns true if there are no more.

inst = iter.value()

Returns the current instance.

iter = netIterator(cellView *cv)

Initialises the net iterator for the cellView. The iterator has similar next(), end() and value() functions

as above.

iter = pinIterator(cellView *cv)

Initialises the pin iterator for the cellView. The iterator has similar next(), end() and value() functions

as above.

iter = lppIterator(cellView *cv)

Initialises the lpp iterator for the cellView. The iterator has similar next(), end() and value() functions

as above.

August 30,
2023

GLADE REFERENCE MANUAL

230

9.3.5 dbObj class

The dbObj class is the base class of Glade database objects (it is derived from a lower level memory

allocation class which caches objects, but the user need not be concerned about that). A dbObj is

never created directly. Most access to dbObjs is at the derived class level.

dbtype_t objType()

Returns the type of an object. This may be one of the following.

ARC
ARRAY
CELL
CELLVIEW
ELLIPSE
FIGGROUP
HSEG
INST
LINE
MPP
PATH
POLYGON
NET
PIN
RECTANGLE
SEGMENT
TEXT
VERTEX
VSEG
VIAINST
VIEW

const char* objName()

Returns the print name of an object.

bool isInst()

Returns true if the object is an inst or array.

bool isShape()

Returns true if the object is a shape.

bool isViaInst()

August 30,
2023

GLADE REFERENCE MANUAL

231

Returns true if the object is a viaInst.

bool isSeg()

Returns true if the object is a segment.

bool isVertex()

Returns true if the object is a vertex.

bool dbFindProp(const char *name, bool caseSensitive=True)

Returns true if the object has a property name.

propType dbFindPropType(const char *name)

Returns the type of a property as one of stringType, listType, integerType, floatType, booleanType.

dbSetPropVisible(const char *name, bool visible)

Sets whether the property is visible in schematics when displayed using a NLPLabel.

bool dbIsPropVisible(const char *name)

Returns true if the property is set as visible.

dbSetPropCallback(const char *propName, const char *functionName)

Sets the property callback function name.

const char *dbGetPropCallback(const char *propName)

Gets the callback function name for a property, or None if it is not set.

bool dbAddProp(const char *name, const char *value)

August 30,
2023

GLADE REFERENCE MANUAL

232

Adds a property name to the object with string value value. If the property already exists, it is

replaced. A return value of True signifies success (the property was found or added).

bool dbAddProp(const char *name, const char *value, const char *choices)

Adds a property name to the object with list value value. The possible values for the property are

given in choices, in python list syntax e.g. [val1, val2, val3]. If the property already exists, it is

replaced. A return value of True signifies success (the property was found or added). List type

properties when displayed in the Query dialog or Create Instance dialog can be edited using a combo

box widget, whose values are those specified in choices.

bool dbAddProp(const char *name, int value)

Adds a property name to the object with integer value value. If the property already exists, it is

replaced. A return value of True signifies success (the property was found or added).

bool dbAddProp(const char *name, double value)

Adds a property name to the object with float value value. If the property already exists, it is

replaced. A return value of True signifies success (the property was found or added).

bool dbAddProp(const char *name, bool value)

Adds a property name to the object with boolean value value. If the property already exists, it is

replaced. A return value of True signifies success (the property was found or added).

bool dbReplaceProp(const char *name, const char *value)

Returns true if the property name exists and its value is replaced by value. Else returns false.

bool dbReplaceProp(const char *name, const char *value, const char *choices)

Returns true if the property name exists and its value is replaced by value, with possible values given

by choices. Else returns false.

bool dbReplaceProp(const char *name, int value)

Returns true if the property name exists and and its value is replaced by value. Else returns false.

August 30,
2023

GLADE REFERENCE MANUAL

233

bool dbReplaceProp(const char *name, double value)

Returns true if the property name exists and and its value is replaced by value. Else returns false.

bool dbReplaceProp(const char *name, bool value)

Returns true if the property name exists and its value is replaced by value. Else returns false.

char* dbGetListProp(const char *name, bool caseSensitive=True)

Returns the string value of the listType property name in the form ‘[val1, val2, val3]’

char* dbGetStringProp(const char *name, bool caseSensitive=True)

Returns the string value of the stringType property name.

int dbGetIntProp(const char *name, bool caseSensitive=True)

Returns the integer value of the integerType property name.

double dbGetFloatProp(const char *name, bool caseSensitive=True)

Returns the float value of the floatType property name.

bool dbGetBoolProp(const char *name, bool caseSensitive=True)

Returns the boolean value of the booleanType property name.

[] getPropList()

Gets the object's property list as a Python list of prop objects. A prop object is a helper class with the

following accessor methods:

char* name()

Returns the name of the property.

setName(char *name)

August 30,
2023

GLADE REFERENCE MANUAL

234

Sets the name of the property.

propType getType()

Returns the type of the property.

setType(propType type)

Sets the type of the property.

propValue data()

Returns the property value. value.s is the string data, value.i the integer data, value,f the

float data, value.b the boolean data.

setData(value)

Sets the property value. The function is overloaded for the common propType types.

bool isVisible()

Returns True if the property visibility flag (used to control schematic display) is set.

setVisible(bool val)

Sets the visibility of the property.

char* callback()

Returns the callback function name associated with the property.

setCallback(char *callback)

Sets the callback name. Note that the callback function name does not need parenthesis,

although this is ignored if present i.e. myCallback and myCallback() are equally valid callback

names.

char *choices()

Returns the allowed values of a list type property.

setChoices(char *choices)

Set the allowed values of a list type property.

dbSetPropList([])

Sets the object’s property list.

August 30,
2023

GLADE REFERENCE MANUAL

235

bool dbDeleteProp(const char *name)

Returns true if the property name is found, if so the property is deleted.

Casting a dbObj to a derived class

In Python, there is no means of casting a base class to a derived class. So for example if you use the

cellView::dbGetOverlaps() function to get a list of objects, these are returned as dbObj class. To

facilitate conversion, there are a set of functions that convert a dbObj to a derived class e.g.

rectangle.

arc* toArc()

Casts a dbObj to an arc. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

array* toArray()

Casts a dbObj to an array. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

cell* toCell()

Casts a dbObj to a cell. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

cellView* toCellView()

Casts a dbObj to a cellView. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

ellipse* toEllipse()

Casts a dbObj to a ellipse. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

group* toGroup()

Casts a dbObj to a group.

August 30,
2023

GLADE REFERENCE MANUAL

236

HSeg* toHSeg()

Casts a dbObj to a HSeg. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

inst* toInst()

Casts a dbObj to a inst. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

label* toLabel()

Casts a dbObj to a label. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

line* toLine()

Casts a dbObj to a line. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

path* toPath()

Casts a dbObj to a path. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

polygon* toPolygon()

Casts a dbObj to a polygon. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

rectangle* toRectangle()

Casts a dbObj to a rectangle. For use with Python e.g to cast the return objects from

dbGetOverlaps() which are returned as dbObj types.

segment* toSegment()

August 30,
2023

GLADE REFERENCE MANUAL

237

Casts a dbObj to a segment. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

viaInst* toViaInst()

Casts a dbObj to a viaInst. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

vertex* toVertex()

Casts a dbObj to a vertex. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

VSeg* toVSeg()

Casts a dbObj to a VSeg. For use with Python e.g to cast the return objects from dbGetOverlaps()

which are returned as dbObj types.

9.3.6 dbHierObj class

A dbHierObj is a helper class created in hierarchical searches using dbGetHierOverlaps(). It contains

the object, the cellView that contains the object and the transformation of the object from the top

level.

dbHierObj(cellView *cv, dbObj *obj, transform trans)

Construct a dbHierObj with the cellView cv containing object obj and the transformation trans as

seen from the top level.

bool operator == (const dbHierObj & other)

True if the two dbHierObjs are equal, i.e. represent the same hierarchical object.

bool operator != (const dbHierObj &other)

True if the two dbHierObjs are not equal, i.e. are different hierarchical objects.

August 30,
2023

GLADE REFERENCE MANUAL

238

bool operator < (const dbHierObj &other)

True if the dbHierObj is 'less than' the other. 'Less than' is a rather arbitrary comparison used for

sorting. Objects are compared by type, layer, transformation and their pointlist.

dbObj * object()

Returns the dbObj associated with the dbHierObj.

transform & transform()

Returns the transform of the dbHierObj.

int layer = layer()

Returns the layer of the object.

cellView *cv()

Returns the cellView that contains the object.

9.3.7 dbObjList class

A dbObjList is a list class containing dbObj objects. It is returned e.g by the cellView function

dbGetOverlaps()

clear()

Clears a dbObjList

int size()

Returns the number of objects in a dbObjList

bool isEmpty()

August 30,
2023

GLADE REFERENCE MANUAL

239

Returns True if the dbObjList is empty, i.e. the size is zero.

bool member(dbObj *obj)

Returns True if the object obj is a member of the list, else False.

prepend(dbObj *obj)

Inserts the object at the beginning of the list. No list traversal is required.

append(dbObj *obj)

Inserts the object at the end of the list. No list traversal is required.

concat(dbObjList *otherlist)

Concatenate the two lists. otherlist is appended to the list, note this is a soft copy and otherlist

remains unchanged.

bool remove(dbObj *obj)

Removes the object from the list. The list size is decremented. Returns True if the dbObj was found

in the list, False if not.

dbObj * pop()

Pops an object from the front of the list; the size of the list is decremented by one.

dbObj * first()

Returns the first object in the list.

dbObj * next()

Returns the next object in the list, or null if the end of the list is reached. The iterator is incremented.

August 30,
2023

GLADE REFERENCE MANUAL

240

dbObj * peek()

Returns the next object in the list, or null if the end of the list is reached. The iterator is NOT

incremented.

dbObj * last()

Returns the last object in the list, or null if the list is empty.

9.3.7.1 Casting to other types

Because many operations e.g. dbGetOverlaps() as mentioned above return a dbObjList with object

as the base class, dbObj , there are swig wrapped C functions to cast to the derived type (you cannot

cast in python).

See the dbObj class for a list of all cast functions.

9.3.7.2 Iterator

An iterator to allow traversing the objects in the dbObjList using Python.

iter = objIterator(dbObjList *list)

Initialises the dbObj iterator for the dbObjList . For example:

objs = cv.dbGetOverlaps(box, layer)
iter = dbObjIterator(objs)
while not iter.end() :

obj = iter.value()
type = obj.objType()
print "object type = ", type
iter.next()

dbObj * value()

Returns the current object.

next()

Advances the iterator to the next dbObj .

bool end()

Returns False if there are more objects, else returns True if there are no more.

August 30,
2023

GLADE REFERENCE MANUAL

241

9.3.8 Edge class

The Edge class represents an edge, i.e a connected pair of vertices.

Edge * Edge (const Point &p0, const Point &p1)

Creates and Edge object and initialises the endpoints.

Edge * Edge (x0, y0, x1, y1)

Creates and Edge object and initialises the endpoints.

Point getP0()

Gets one endpoint P0.

Point getP1()

Gets the other endpoint P1.

setP0(const Point &p)

Sets endpoint P0 to p.

setP1(const Point &p)

Sets endpoint P1 to p.

offset(int dx, int dy)

Transposes the edge by the distance specified by dx, dy.

bool operator ==

Returns True if the edges are the same i.e. endpoints P0 and P1 are identical.

August 30,
2023

GLADE REFERENCE MANUAL

242

bool operator !=

Returns True if of the edges are not the same i.e. endpoints P0 and P1 are not identical.

int length()

Returns the Euclidian length of the edge e.

bool isHorizontal()

Returns true if the edge is horizontal.

bool isVertical()

Returns true if the edge is vertical.

bool isDiagonal()

Returns true if the edge is diagonal.

bool isOrthogonal()

Returns true if the edge is either horizontal or vertical.

int deltax()

Returns the horizontal distance between the edges endpoints i.e. P1-P0.

int deltay()

Returns the vertical distance between the edges endpoints i.e. P1-P0.

bool contains(const Point &p, bool includeEnds=True)

Returns True if the point p lies on the edge e. If includeEnds is True, the point p can lie on the

endpoints of the edge and be considered 'contained'.

August 30,
2023

GLADE REFERENCE MANUAL

243

bool crosses(const Rect &r, bool touch = True)

Returns True if the edge crosses the Rect r, i.e. if the edge intersects one of the Rect 's edges. If

touch is True, this includes the endpoint of the edge touching an edge of the Rect .

bool crosses(Point *pts, int numPoints, bool touch = True)

Returns True if the edge crosses the polygon given by pts, i.e. if the edge intersects one of the

polygon's edges. If touch is True, this includes the endpoint of the edge touching an edge of the

polygon.

int pointToEdge(const Point &p)

Returns the shortest distance from a point p to the edge.

bool intersects(const Edge &other, bool includeEnds=True)

Returns true if the edges intersect at some point. If includeEnds is true, returns true if the edges

intersect at endpoint(s).

Point interSectsAt(const Edge &other)

Returns the point of intersection of two edges. The result is only valid if the edges intersect.

bool isColinear(const Edge &other)

Returns true if the edges are colinear, i.e. the edges are parallel and a point of one edge is on the

other edge.

bool projects(const Edge &e1, const Edge &e2, Edge &e3, Edge &e4)

Returns true if the edges are parallel and project onto each other. Edges e3 and e4 are the projecting

edges.

Point nearestPoint(const Point &pt)

Returns the point on the edge that is nearest the Point pt. The point p is either on a line

perpendicular to the edge, or if no such line exists, is the nearest endpoint of the edge.

August 30,
2023

GLADE REFERENCE MANUAL

244

Vector v normalTo(const Point &pt)

Returns a Vector that is the perpendicular distance from the Point pt to the edge.

bool left(const Point &p)

Returns true if point p is to the left of edge e, i.e. 'inside'. Note this assumes the direction of the

edge is from endpoint P0 to endpoint P1.

9.3.9 ellipse class

An ellipse is represented by a centre point and an X and Y radius. If X and Y are equal, you have a

circle. An ellipse is normally created by the cellView function dbCreateEllipse() or dbCreateCircle().

int left()

Returns the least X value of the ellipse’s bounding box.

int right()

Returns the greatest X value of the ellipse’s bounding box.

int bottom()

Returns the lowest Y value of the ellipse’s bounding box.

int top()

Returns the highest Y value of the ellipse’s bounding box.

setOrigin(const Point &origin)

setOrigin(int x, int y)

Sets the ellipse’s centre point.

August 30,
2023

GLADE REFERENCE MANUAL

245

int origin()

Returns the ellipse’s centre point.

int height()

Returns the height of the ellipse.

int width()

Returns the width of the ellipse.

Rect bBox()

Returns the ellipse’s bounding box.

setXRadius(int r)

Set the X radius of the ellipse

setYRadius(int r)

Set the Y radius of the ellipse.

int xRadius()

Returns the X radius of the ellipse.

int yRadius()

Returns the Y radius of the ellipse.

setNumChords(int n)

Sets the number of edges that the ellipse will be fractured into when converting to a polygon.

August 30,
2023

GLADE REFERENCE MANUAL

246

int numChords()

Get the number of chords for the ellipse.

Point [index]

Returns the Point p at the index into the ellipse’s pointlist.

dbtype_t objType()

Returns the object’s type as ELLIPSE

const char* objName()

Returns the object’s name as “ELLIPSE”

double area()

Returns the ellipse’s area.

int perimeter()

Returns the ellipse’s perimeter.

bool offGrid(int grid)

Returns true if the ellipse’s xRadius or yRadius is offgrid.

transform(transform &trans)

Transforms the ellipse by trans.

Move(cellView *dest, Point delta, bool opt=True)

Move this ellipse by distance delta. If opt is True then the database is re-optimised for the new

rectangle position. If there are a lot of objects to move it makes sense to turn this off and instead

use the cellView update() function after moving them all.

August 30,
2023

GLADE REFERENCE MANUAL

247

dbObj * Copy(cellView *dest, Point delta, layer=-1)

Copy this ellipse to cellView dest, with offset delta. If layer is non negative the rectangle will be

copied to the new layer number.

dbObjList<dbObj> * Flatten(cellView *dest, transform trans, bool hier=True)

Flatten this ellipse into cellView dest with transformation trans. A dbObjList of the flattened objects

is returned.

bias(int bias, int xgrid, int ygrid, int layer=-1)

Bias this ellipse by bias, snapping to the grid xgrid and ygrid.

scale(double scale, int grid)

Scale this ellipse by scale, snapping to the grid grid.

9.3.10 group class

A group is an object derived from a dbObj that groups together other dbObj (including other

groups). This allows groups of objects to be manipulated together, e.g. move, copy, rotate

operations can be carried out as if the group is an instance.

A group can be transparent; a transparent group can have its individual members edited, whereas a

non-transparent group can only have its shape manipulated (which is a rectangle on the group layer,

with size equal to the bounding box of all the members).

A group is normally created using the cellView dbCreategroup() function.

db_Type objType()

Get the type of the object as group.

const char* objName()

Get the print name of the object, as "group".

August 30,
2023

GLADE REFERENCE MANUAL

248

setName(const char *name)

Sets the name of the group

const char* name()

Gets the group's name.

const Rect bBox()

Gets the group's bounding box.

int left()

Gets the left edge / minimum X coord of the group bBox

int bottom()

Gets the bottom edge / minimum Y coord of the group bBox

int right()

Gets the right edge / maximum X coord of the group bBox

int top()

Gets the top edge / maximum Y coord of the group bBox

orient(orient_t o)

Sets the orientation of the group.

orient_t orient()

Gets the orientation of the group.

August 30,
2023

GLADE REFERENCE MANUAL

249

origin(const Point &p)

Sets the origin (lower left coordinate) of the group.

Point & origin()

Gets the origin of the group.

addObject(dbObj *obj)

Adds an object obj to the group. If the object is already a member of the group, it will not be added.

The group's bounding box is adjusted accordingly.

deleteObj(dbObj *obj)

Removes an object obj from the group. The group's bounding box is adjusted accordingly.

int size()

Returns the size (number of objects in the group).

std::vector<dbObj *> & members()

Returns a list of the group's members.

clear()

Removes all members of the group. The group is NOT deleted.

bool member(dbObj *obj)

Returns true if obj is a member of the group.

bool ptInPoly(const Point &p)

Returns true if the point p is inside the group's bounding box.

August 30,
2023

GLADE REFERENCE MANUAL

250

Move(cellView *cv, Point delta, bool opt=True)

Moves the group (of the cellView cv) and all its members by delta. If opt is True, the spatial trees are

reoptimised. If many groups are to be moved, it is faster to set opt to false and make a single call to

cv.optimise() after.

dbObj * Copy(cellView *cv, Point delta)

Copies the group and all its members, displacing it by delta in the cellView cv.

transform(transform &trans)

Transforms the group and all its members by trans.

int layer = layer()

Returns the group's layer id, TECH_FIGGROUP_LAYER.

9.3.11 HSeg class

A HSeg represents a wiring segment for place&route data, which uses less memory than an

equivalent 2 point path. It is a 2 vertex horizontal path. A HSeg is normally created by the

dbCreateHSeg() function.

setPoints(int x1, int y1, int x2, int y2)

Sets the vertices of the HSeg

int left()

Gets the leftmost X coordinate of a HSeg.

int right()

Gets the rightmost X coordinate of a HSeg.

int bottom()

August 30,
2023

GLADE REFERENCE MANUAL

251

Gets the lowest Y coordinate of a HSeg.

int top()

Gets the highest Y coordinate of a HSeg.

int coord(int i)

Gets the i’th coordinate of a HSeg.

bool offGrid(int grid)

Returns true if the HSeg is offgrid.

bool manhattan()

Returns true.

setStyle(db_PathStyle s)

Sets the HSeg style, i.e. the type of the path end. The style can be one of DB_TRUNCATED,

DB_ROUND, DB_EXTENDED, DB_VAREXTEND, DB_OCTAGONAL.

int getStyle()

Gets the HSeg style.

setType(db_PathType t)

Sets the HSeg pathtype. The type can be one of DB_ROUTEDWIRE, DB_FIXEDWIRE, DB_COVERWIRE,

DB_NOSHIELD.

db_PathType getType()

Gets theHSeg type.

August 30,
2023

GLADE REFERENCE MANUAL

252

const char* getTypeStr()

Gets the HSeg type as a string.

setShape(db_PathShape s)

Sets theHSeg pathshape. The shape can be one of DB_RING, DB_PADRING, DB_BLOCKRING,

DB_STRIPE, DB_FOLLOWPIN, DB_IOWIRE, DB_COREWIRE, DB_BLOCKWIRE, DB_BLOCKAGEWIRE,

DB_FILLWIRE, DB_DRCFILL.

db_PathShape getShape()

Gets theHSeg shape.

const char* getShapeStr()

Gets the HSeg shape as a string.

orient(orient_t o)

Sets the HSeg orientation. This has no effect on a HSeg

orient_t orient()

Returns the HSeg orient as R0.

const char* getOrientStr()

Returns the HSeg orient as “R0”

setSpecial(bool val)

Sets the HSeg specialNet flag

isSpecial()

August 30,
2023

GLADE REFERENCE MANUAL

253

Returns true if the HSeg specialNet flag is set.

setHasNet(net *n)

Sets the HSeg hasNet flag. If set, theHSeg has net info.

hasNet()

Returns the HSeg s hasNet flag. If set, the HSeg has net info.

setNet(net *n)

Sets the HSeg net

net* getNet()

Returns the HSeg net.

setIndex(int i)

Sets the HSeg index. The index is used to look up the segParams of this HSeg in the library.

int index()

Gets the HSeg index.

Rect bBox()

Get the bounding box of this HSeg.

dbtype_t objType()

Returns the object type of this HSeg as HSEG.

const char* objName()

August 30,
2023

GLADE REFERENCE MANUAL

254

Returns the object name of this HSeg as "HSEG".

int layer()

Gets the layer number of this HSeg.

int width()

Gets the HSeg width.

double area()

Get the area of this HSeg.

int perimeter()

Get the perimeter of this HSeg

Point getFirstVertex()

Gets the first vertex of this HSeg.

Point getLastVertex()

Gets the last vertex of this HSeg.

int extent()

Returns the extent, i.e. the length of the HSeg.

setExtent(int e)

Sets the extent of the HSeg.

Point origin()

August 30,
2023

GLADE REFERENCE MANUAL

255

Returns the origin point of a HSeg.

setOrigin(int x, int y)

Sets the origin of a HSeg.

bool ptInPoly(const Point &p)

Returns true if the Point p is contained in the HSeg or on its edges.

Move(cellView *dest, Point delta, bool opt = True)

Move this HSeg by distance delta. If opt is True then the database is re-optimised for the new HSeg

position. If there are a lot of objects to move it makes sense to turn this off and instead use the

cellView update() function after moving them all.

dbObj * Copy(cellView *dest, Point delta, int layer = -1)

Copy this HSeg to cellView dest, with offset delta. If layer is a positive integer the HSeg will be

copied to the new layer number.

dbObjList<dbObj> * Flatten(cellView *dest, transform &trans)

Flatten this HSeg into cellView dest with transformation trans.

int getNearestEdge(const Point &p, segment &edge, bool centreLine=True, bool outLine=True)

Gets the nearest segment edge to the HSeg from the Point p and returns the distance. If centreline is

True, the centre line of the HSeg is considered. If outLine is True, the outline edges of the HSeg are

considered.

int getNearestVertex(const Point &p, vertex &vert)

Gets the nearest vertex vert to theHSeg from the Point p and returns the distance.

const char* getNetName()

August 30,
2023

GLADE REFERENCE MANUAL

256

Returns the HSeg’s net name as a string.

int length()

Returns the HSeg length.

int nPoints()

Returns the number of points of the HSeg (2).

Point * ptlist()

Returns the point list of this HSeg as a C array of Points.

9.3.12 inst class

An instance is a reference to a cellView, in another cellView. Instances correspond to GDS2 SREFs or

DEF components. Instances are created using the dbCreateInst cellView function.

int left()

Get the left edge of the instance's bounding box.

int bottom()

Get the bottom edge of the instance's bounding box.

int right()

Get the right edge of the instance's bounding box.

int top()

Get the top edge of the instance's bounding box.

bool offGrid(int grid)

August 30,
2023

GLADE REFERENCE MANUAL

257

Checks if an instance origin is on the grid grid, which is in database units.

orient(orient_t orient)

Set the instance orientation. orient can be one of: R0, R90, R180, R270, MX, MXR90, MY, MYR90.

orient_t orient ()

Get the instance orientation.

status(db_PlaceStatus s)

Set the placement status of the instance. db_PlaceStatus can be one of: DB_UNPLACED, DB_PLACED,

DB_FIXED, DB_COVER, DB_UNKNOWN.

db_PlaceStatus i.status()

Get the placement status of the instance.

const char* getPlacementStatusStr()

Get the placement status of the instance as a string.

source(db_SourceType s)

Set the instance source status. The source type can be DB_SRC_NONE, DB_SOURCE_NETLIST,

DB_SRC_DIST, DB_SRC_USER, DB_SRC_TIMING.

db_SourceType source()

Get the instance source status.

const char* getPlacementSourceStr()

Gets the instance source status as a string.

August 30,
2023

GLADE REFERENCE MANUAL

258

bound(bool b)

Set the instance binding. This should probably not be set by the user.

bool bound()

Get the instance binding status. An instance is bound if it references a valid master. If an instance

references a master in a library that has not been opened, it will be unbound.

double mag()

Get the instance's magnification. Magnifications other than 1.0 are supported, but their use is

strongly discouraged.

mag(double m)

Sets the instance’s magnification.

char* libName()

Get the instance's lib name.

library * lib()

Get the instance’s library .

char* cellName()

Get the instance's cell name.

cellName(const char* name)

Set the instance master's cellName.

char* viewName()

Get the instance’s view name.

August 30,
2023

GLADE REFERENCE MANUAL

259

viewName(const char* name)

Set the instance’s view name.

instName(cellView* cv, const char* instName)

Set the instance's instName. cv is the cellView containing the instance.

char* instName()

Get the instance's instName.

cellView * getMaster()

Get the cellView of the instance's master. If the instance is unbound, returns a null cellView .

setMaster(cellView * cv)

Set the instance's master cellView.

Point & origin()

Get the origin of the instance. Note that an instance's origin does not have to be at the lower left of

its bounding box - it can be anywhere.

origin(const Point &p)

origin(int x, int y)

Set the origin of the instance.

Rect bBox()

Get the instance's bounding box.

bBox(Rect &b)

August 30,
2023

GLADE REFERENCE MANUAL

260

Set the instance bounding box. This should generally not be set by the user. Instead use

updateBbox() to recompute the instance bounding box if required.

updateBbox()

Recomputes the instance bounding box from its master bBox, origin, orientation and magnification.

Rect getBoundary()

Gets the instance's boundary rectangle. If the instance is e.g. a LEF macro then it will contain a shape

on the TECH_PRBOUNDARY_LAYER, and the Rect representing this boundary shape will be returned.

The shape is transformed according to the inst's origin, orientation and magnification.

dbtype_t objType()

Returns the objects type as INST

const char* objName()

Returns the print name i.e. "INST"

int getNearestEdge(const Point & p, segment & edge)

Get the nearest bounding box edge of this instance to a Point p. Returns the distance to the

segment.

transform(transform & trans)

Transform the instance by the given transform.

scale(double scalefactor, double grid)

Scale the instance origin coordinates by scalefactor, snapping to grid.

Move(cellView *dest, Point delta, bool opt = True)

August 30,
2023

GLADE REFERENCE MANUAL

261

Move the instance origin by delta. If opt is True then the database is re-optimised for the new inst

position. If there are a lot of objects to move it makes sense to turn this off and instead use the

cellView update() function after moving them all.

dbObj * Copy(cellView *dest, Point delta)

Copy the instance. dest is the destination cellView , delta is the offset from the current origin. The

copy is returned.

dbObjList <dbObj >* Flatten(cellView * dest, transform &trans)

Flatten the instance into the cellView dest, with the given transform trans. A dbObjList of the

objects flattened is returned.

instPin* dbCreateInstPin(net * n, const char* name, bool warn=true)

Create an instance pin on this instance for the net n and pin name name, and returns the instPin.

bool dbDeleteInstPin(net *n, const char *name)

bool dbDeleteInstPin(instPin * ip)

Delete the instPin ip from this instance.

instPin* dbFindInstPinByName(const char *name)

Find the inst pin with name name on this instance. Returns null if not found.

dbObjList<instPin>* instPins()

Gets a dbObjList of the instPins for this instance.

[list] getInstPins()

Get a python list of all instPins for this instance.

int getNumInstPins()

August 30,
2023

GLADE REFERENCE MANUAL

262

Get the number of instPins for this instance.

int layer()

Get the layer of this instance (TECH_INSTANCE_LAYER)

int mfactor()

Get the mfactor of this (schematic) instance.

int numBits()

Returns the number of bits of this instance, if it is an arrayed instance e.g. i<0:7> returns 8.

setSpecial(bool b)

Sets the special flag for this instance

bool isSpecial()

Returns the special flag for this instance

9.3.13 instPin class

An instPin is usually created by its constructor. An instPin represents the hierarchical crossing of a

net at one level of hierarchy to a pin on the instance of a cell (the lower level of hierarchy). Thus an

instPin needs a valid net and instance whose master must have a pin of the given name.

instPin* instPin (inst * i, net * n, char* name)

Create an instPin for inst i and net n with pin name name.

setInst(inst * i)

Set the instPin's instance to i.

August 30,
2023

GLADE REFERENCE MANUAL

263

inst* getInst()

Get the instPin's inst .

setName(char* name)

Set the instPin's name

char* getName()

Get instPin's name

setNet(net * n)

Set the instPin's net

net* getGet()

Get the instPin's net

setPin(pin *p)

Set the master's pin

pin* getPin()

Get the master's pin

setSpecial(bool s)

Set this instPin as special. Used for LEF/DEF.

bool isSpecial()

Get the instPin 's special status. Used for LEF/DEF.

August 30,
2023

GLADE REFERENCE MANUAL

264

setBound(bool b)

Set the instPin binding status

bool isBound()

Get the instPin binding status.

setWired(bool b)

Set the instPin wired status

bool isWired()

Get the instPin wired status.

Point getPortLoc()

Get the centre of the bounding box of the instPin’s first port shape.

int getNumPorts()

Get the number of port shapes for this instPin.

bool isSupplyPin()

Returns true if this instPin is a supply pin , i.e. it is connected to a power or ground net.

9.3.14 label class

The label class is derived from a shape. This class is normally created in a cellView using the

dbCreateLabel function.

int left()

Get the left edge of the label’s bounding box.

August 30,
2023

GLADE REFERENCE MANUAL

265

int bottom()

Get the bottom edge of the label’s bounding box.

int right()

Get the right edge of the label’s bounding box.

int top()

Get the top edge of the label’s bounding box.

bool offGrid(int grid)

Returns true if the label is on grid.

char* theLabel()

Gets the label text.

theLabel(char *name)

Sets the label text.

double height()

Gets the label 's height. Labels are displayed with height in microns in a cellView with viewType

maskLayout.

height(double h)

Sets the label 's height

double width()

Gets the label 's width. The label width is the width of its bounding box.

August 30,
2023

GLADE REFERENCE MANUAL

266

width(double w)

Sets the label 's width. This is not used.

orient_t orient()

Gets the label orientation.

orient(orient_t o)

Sets the label orientation.

Point & origin()

Gets the label 's origin.

origin(int x, int y)

Sets the label 's origin.

origin(const Point &p)

Sets the label 's origin.

setType(db_LabelType t)

Sets the label type. A label type can be one of normal, cdlLabel, pyLabel.

type()

Gets the label type.

db_TextAlign align()

Gets the label 's alignment. A label alignment can be one of topLeft, centreLeft, bottomLeft,

topCentre, centreCentre, bottomCentre, topRight, centreRight, bottomRight.

August 30,
2023

GLADE REFERENCE MANUAL

267

align(db_TextAlign a)

Sets the label 's alignment.

overline(bool b)

Sets the label’s overline flag.

bool overline()

Get the label’s overline flag.

underline(bool b)

Sets the label’s underline flag.

bool underline()

Gets the label’s underline flag.

strikethru (bool b)

Sets the label’s strikethru flag.

bool strikethru ()

Gets the labe’s strikethru flag.

flags(short int f)

Sets the label’s flag bits.

short int flags()

Gets the label’s flag bits.

August 30,
2023

GLADE REFERENCE MANUAL

268

Rect bBox

Gets the bounding box of the label . Note that as a label does not have a 'real' bounding box - the

box is approximately the size of the displayed text of the label .

l.objType()

Get the object type (TEXT)

Const char *name = l.objName()

Gets the object name ("LABEL")

int getNearestEdge(const Point &p, segment &edge)

Gets the nearest edge of the label 's bounding box to a Point p. The function returns the distance to

the edge.

l.transform(transform &trans)

Transform a label by some transform trans.

bool ptInPoly(const Point &p)

Returns true if the Point p is contained by the label’s bounding box.

Move(cellView *dest, Point delta, bool opt = True)

Moves a label by distance delta. If opt is True then the database is re-optimised for the new label

position. If there are a lot of objects to move it makes sense to turn this off and instead use the

cellView update() function after moving them all.

dbObj * Copy(cellView *dest, Point delta, int layer=-1)

Copy the label to cellView dest, with offset delta. If layer is non-negative the label will be copied to

the new layer.

August 30,
2023

GLADE REFERENCE MANUAL

269

dbObjList<dbObj> * Flatten(cellView *dest, transform &trans)

Flatten the label into cellView dest with some transform trans.

bias(int bias, int xgrid, int ygrid,)

Bias the label . As the label is really just a point, this does nothing useful.

scale(double scale, double grid)

Scale the label . The label ’s origin is scaled by the value scale.

9.3.15 library class

All design data is stored in libraries. Libraries contain cells and views; the combination of a cell and a

view is a cellView , which contains the actual design data. For example a library may contain a cell

'NAND2'. This cell may contain a cellView 'NAND2' 'layout', where 'layout is the view of the cell.

A library has a techfile associated with it.

library * library (const char *fred)

Construct a new library called "fred", returning the library object. A default techfile is created with

system layers only.

cellView * dbFindCellViewByName(const char *cellName, const char *viewName)

Find a cellView in this library. Returns a cellView object corresponding to the given cellName and

viewName, or None if it does not exist in the library .

cell * dbFindCellByName(const char *cellName)

Returns a cell object corresponding to the given cellName, or None if it does not exist.

view * dbFindViewByName(const char *viewName)

Returns a view object corresponding to the given viewName, or None if it does not exist.

cellView * dbOpenCellView(const char *cellName, const char *viewName, char mode)

August 30,
2023

GLADE REFERENCE MANUAL

270

Returns a cellView object. "mode" can be 'r', 'w' or 'a'. 'w' mode is used to create a new cellView ;

the cellView must not exist. 'a' mode is used to append (edit) an existing cellView ; the cellView

must exist. 'r' mode is used to read an existing cellView ; the cellView must exist. An exception is

thrown on failure.

bool dbDeleteCellView(const char *cellName, const char *viewName)

Deletes the cellview specified by cellName and viewName and returns True if sucessful, False if not.

bool dbRenameCellView(const char *newCellName, const char *newViewName, const char

*oldCellName, const char *oldViewName)

Renames a cellView in this library. Returns True if successful.

bool dbCopyCellView(const char *newCellName, const char *newViewName, const char

*oldLibName, const char *oldCellName, const char *oldViewName)

Copies a cellView into this library. Returns True if successful.

bool dbRenameCell(const char *newCellName, const char *oldCellName)

Renames a cell. Returns True if sucessful, False if not.

bool dbDeleteCell(const char *cellName)

Deletes the cell specified by cellName and returns True if sucessful, False if not.

bool dbOpenLib(const char *libPath)

Opens and reads a previously saved library . libPath is the full path to the library , including the

library name. Returns True if the library can be opened successfully, otherwise False. Note you

need to create a library object before you can read a saved library.

bool dbSaveLib(const char *libPath)

Saves a library to disk. libPath is the full path to the library , including the library name. Returns

True if the library can be saved successfully, otherwise False.

August 30,
2023

GLADE REFERENCE MANUAL

271

dbClose(const char *cellName, const char *viewName)

Closes a cellView . Currently this does not purge the cellView from virtual memory.

view * dbCreateView(const char* name, db_viewType type = maskLayout)

Creates a view in the library.

cell *dbCreateCell(const char* name)

Creates a cell in the library.

bool dbIsLockedCell(const char* cellName, const char* viewName)

Returns true is a cellView is locked.

bool dbLockCell(const char* cellName, const char* viewName, bool lock)

Locks a cellView.

libName(const char* name)

Set the library name.

char* libName()

Returns the name of the library .

libPath(const char* path)

Sets a library path.

char* libPath()

Returns the library path if the library has been read or saved on disk, otherwise None.

August 30,
2023

GLADE REFERENCE MANUAL

272

dbu(double val)

Set the database size in metres.

int dbu()

Return the size of a database unit in metres. This is deprecated; use the cellView userUnits() function

to determine the user units, and the cellView dbuPerUU() function to return the number of database

units per user unit.

dbuPerUU(int val)

Sets the database units per micron.

int dbuPerUU()

Return the number of database units per micron (defaults to 1000). This is deprecated; use the

cellView dbuPerUU() function to return the number of database units per user unit.

userUnits(const UserUnits val)

Sets the user units. May be microns or inches.

UserUnits userUnits()

Gets the user units.

int addSegParam(dbSegParam *seg)

Add a segParam to the table.

dbSegParam * getSegParam(int index)

Get a segParam by index from the table.

August 30,
2023

GLADE REFERENCE MANUAL

273

dbSegParam * getSegParamByLayer(int layer)

Get a segParam by layer. Will get routing layer segParams first.

int get SegIndexByLayer(int layer)

Get a segParam index by its layer.

int getSegIndexByLayerAndWidth(int layer, int width)

Get a segParam index by its layer and width.

int getSegIndexByLayerAndWidthAndStyle(int layer, int width, db_PathStyle style)

Get a segParam index by its layer and width and style.

int getNumSegParams()

Get the number of segParams in the table.

int addVia(via *v, bool check = false)

Adds a via v to the library via table and returns the via's index in that table. If check is true (the

default is false), the via name is checked and the new via will NOT be added; the index returned is

that of the existing via.

via * getVia(int index)

Gets a via by index from the library . No bounds checking is performed.

via * getViaByName(const char *name)

Gets a via by name.

int getViaIndexByName(const char *name)

Gets a via's index by the via name.

August 30,
2023

GLADE REFERENCE MANUAL

274

const char* getViaNameByIndex(int index)

Gets a via's name from its index.

int num = lib.getNumVias()

Gets the number of vias in the library 's via table. Note the table size is currently limited to 8192 vias.

bool dbDeleteVia(const char* name)

Delete a via by name.

dbDeleteVias()

Delete all vias in the via table.

int createNonDefRule(const char *name)

Create a named nondefault rule and return its table index.

int createNonDefRule(nonDefRule *rule)

Create a nondefault rule fro its nonDefRule and return its table index.

nonDefRule * getNonDefRule(const char *name)

Get the nonDefRule by name.

nonDefRule * getNonDefRule(int index)

Get the nonDefRule by index.

int getNonDefRuleIndex(const char *name)

Get the nonDefRule index by name.

August 30,
2023

GLADE REFERENCE MANUAL

275

int getNonDefRuleIndex(nonDefRule *rule)

Get the nonDefRule index by nonDefRule.

int getNumNonDefRules()

Get the number of nonDefRules.

nonDefRulesMap * getNonDefRulesMap()

Get the nonDefRules table.

bool createMPPRule(const char *name)

Create a MPP rule by name. Returns true if successful.

bool createMPPRule(mppRule *rule)

Create a MPP rule by mppRule. Returns true if successful.

bool deleteMPPRule(const char *name)

Delete a MPP rule. Returns true if successful.

bool addMPPLayer(const char *name, mppLayer &layer)

Add a layer to a MPP rule.

mppRule * getMPPRule(const char *name)

Gets a mppRule by name.

bool setMPPRule(mppRule *rule)

Set a mppRule.

August 30,
2023

GLADE REFERENCE MANUAL

276

int getNumMPPRules()

Gets the number of MPP rules in the table.

dbDeleteMPPs()

Delete all MP rules in the table.

mppRulesMap * getMPPRulesMap()

Get the MPP rules table.

tech(techFile *tech)

Set the library’s techfile.

dbTechFile* tech()

Returns the library 's techFile.

setDefUnits(int units)

Sets the DEF Units scale.

int getDefUnits()

Get the DEF Units scale.

setLefUnits(int units)

Sets the LEF Units scale.

int getLefUnits()

Gets the LEF Units scale.

August 30,
2023

GLADE REFERENCE MANUAL

277

setDefDividerChar(const char *c)

Sets the DEF divier character.

const char * getDefDividerChar()

Gets the DEF divider character.

setDefBusBitChars(const char *c)

Set the DEF bus bits character.

const char *getDefBusBitChars()

Get the DEF bus bits character.

setLefBusBitChars(const char *c)

Sets the LEF bus bits character.

getLefBusBitChars()

Get the LEF bus bits character.

libCellMap * getCellTable()

Get the cell table.

libViewMap * getViewTable()

Get the view table.

dbBindInstMasters()

August 30,
2023

GLADE REFERENCE MANUAL

278

Rebinds the instance masters for this library. All cellViews in the library are checked, and if their

master cellView is unbound, then a search is performed in the currently open libraries in an attempt

to rebind it. For example, to rebind all open libraries you can use the following:

libs = getLibList()
for lib in libs :
 lib.dbBindInstMasters()
end for

[] getLibList()

Returns a Python list of the currently open libraries.

[] = cellNames()

Returns a Python list of all the cell names in the library .

[] getCells()

Returns a Python list of the cells in the library.

[] viewNames()

Returns a Python list of all the view names in the library .

[] getViews()

Returns a Python list of the views in the library.

9.3.16 line class

The line class is derived from a shape. A line can be considered a zero width path. This class is

normally created in a cellView using the dbCreateLine() function.

bool offGrid(int grid)

Returns true if any of the path vertices are not on grid.

August 30,
2023

GLADE REFERENCE MANUAL

279

bool manhattan()

Returns true if the line is Manhattan.

setWidth(int width)

Sets the line width attribute.

int width()

Gets the line width attribute.

Rect bBox()

Get the bounding box of this line. This is the convex hull of the points in the line.

dbtype_t objType()

Returns the object type of this line as LINE.

const char* objName()

Returns the object name of this line as "LINE".

int nPoints()

Returns the number of points of the line.

ptlist(Point *pts, int nPoints, bool compress=true)

ptlist(int* x, int* y, int nPoints, bool compress=true)

Set the line’s pointlist. If compress is true, colinear or duplicate points are removed.

Point * ptlist()

August 30,
2023

GLADE REFERENCE MANUAL

280

Returns the point list of this line as a C array of Points.

Point operator[]

Point at(index)

Returns the Point p at the index into the list of points.

Point & point(int index)

Get a vertex on this line at index.

setPoint(int index, const Point &p)

setpoint(int index, int x, int x)

Set a vertex on this line at index.

bool addPoint(Point *p)

Adds a Point to the end of this line’s vertex list.

Point deletePoint(int index)

Delete a vertex on this line at index.

reshape(int* x, int* y, int nPoints)

Reshape a line with new vertices.

bool ptInPoly(const Point & p, bool includeEnds = True)

Returns True if the point p is on the line. If includeEnds is true, this includes the line start and end

point.

bool ptInRect(const Rect &r)

Returns true if the line crosses (intersects) a rect r.

August 30,
2023

GLADE REFERENCE MANUAL

281

int length()

Get the length of this line.

transform(transform &trans)

Transform this line using trans.

int getNearestEdge(const Point & p, segment &edge)

Get the distance of the nearest segment edge of this line to the point p

int getNearestVertex(const Point & p, vertex &vert)

Get the distance of the nearest vertex vert of this line to the point p

double area()

Get the area of this line.

int perimeter()

Get the perimeter of this line.

Move(cellView *dest, Point delta, bool opt = True)

Move this line by distance delta. If opt is True then the database is re-optimised for the new line

position. If there are a lot of objects to move it makes sense to turn this off and instead use the

cellView update() function after moving them all.

dbObj * Copy(cellView *dest, Point delta, int layer = -1)

Copy this line to cellView dest, with offset delta. If layer is non negative the line will be copied to the

new layer number.

August 30,
2023

GLADE REFERENCE MANUAL

282

dbObjList<dbObj> * obj = Flatten(cellView *dest, transform trans)

Flatten this line into cellView dest with transformation trans.

Stretch(Point delta, segment * seg, bool lock45=true, bool lockEnds=true)

Stretch a segment seg of this line by delta. If lock45 is true, non Manhattan edges are locked to

diagonal. If lockEnds is true, the endpoints of the line are locked with extra vertices added if required

by the stretch.

bias(int bias, int xgrid, int ygrig, int layer=-1)

Does nothing.

scale(double scale, int grid)

Scales the line by scale, snapping to grid.

line * merge(line *other, cellView *cv = NULL)

Merge a line with another line’s pointlist.

9.3.17 lpp class

A lpp object forms a layer-purpose pair. It manages objects in a tree structure for fast spatial

searching.

lpp * lpp(cellView * cv)

Constructs a lpp object with master cellView cv.

layerName(const char* name)

Sets the layer name of the lpp.

const char* layerName()

August 30,
2023

GLADE REFERENCE MANUAL

283

Gets the lpp's layer name.

purpose(const char* name)

Sets the purpose name of the lpp.

const char* purpose()

Gets the lpp's purpose name.

layerNum(int layerNum)

Sets the layer number of the lpp.

int layerNum()

Gets the lpp's layer number.

priority(int p)

Sets the layer priority.

int priority()

Gets the layer priority.

int numShapes()

Gets the number of shapes in this lpp.

cellView * cv()

Get the cellView for this lpp.

bBox(Rect &r)

August 30,
2023

GLADE REFERENCE MANUAL

284

Sets the LPP bounding box.

Rect & bBox()

Get the bounding box of all shapes in this lpp.

bBox(Rect & box)

Set the bounding box of the lpp.

optimiseTree()

Optimise the lpp. Must be carried out after adding objects.

bool isOptimised()

Returns true if the tree is optimised.

int size()

Returns the tree size (number of shapes in the tree)

updateTree(dbObj * obj)

Update the lpp for an object.

dbObjList <dbObj > * dbGetOverlaps (const Rect & searchRect, int filterSize=0)

Search the lpp for shapes overlapping the search rectangle searchRect. If filterSize is non-zero, only

shapes with a width and height greater than filterSize are reported.

int dbGetOverlaps (dbObjList <dbObj > *list, const Rect & searchRect, int filterSize=0)

As above, but shapes are appended to the existing list, and returns the number found.

August 30,
2023

GLADE REFERENCE MANUAL

285

int dbGetOverlaps(dbObjList<dbHierObj> *list, transform trans, const Rect &searchRect, int

filterSize=0)

As above but with a transform.

[] dbGetOverlaps(const Rect & searchRect, int filterSize=0)

As above, but objects are returned as a Python list.

int findOverlaps(const Rect &searchRect)

Returns the number of shapes overlapping the searchRect.

setFilterSize(int size)

Set the filter size in dbu for searches.

9.3.17.1 Iterator

An iterator to allow traversing the objects in the lpp using Python.

iter = objIterator(lpp *lp)

Initialises the dbObj iterator for the lpp. For example:

iter = objIterator(lpp)
while not iter.end() :

obj = iter.value()
type = obj.objType()
print "object type = ", type
iter.next()

dbObj * value()

Returns the current object.

next()

Advances the iterator to the next dbObj .

bool end()

August 30,
2023

GLADE REFERENCE MANUAL

286

Returns false if there are more objects, else returns true if there are no more.

9.3.18 mpp class

The mpp class is derived from a shape. This class is normally created in a cellView using the

dbCreateMPP() function.

addLayer(mppLayer * lyr)

Adds a layer to the mpp.

mppLayer * getLayer(int idx)

Gets the mpp_layer by index idx.

mppLayer *lyrs = m.getLayers()

Gets the mpp_layer as an array for the mpp.

setLayers(mppLayer *lyrs, int numLayers)

Sets the mpp layers.

int numLayers()

Get the number of mpp layers.

setNumLayers(int num)

Set the number of mpp layers.

setMppRule(mppRule *rule)

Set the mpp rule.

August 30,
2023

GLADE REFERENCE MANUAL

287

mppRule *rule = getMppRule()

Get the mpp_rule.

char * getRuleName()

Get the MPP rule name.

int maxWidth()

Get the maximum width of layers in the MPP.

int maxBegExt()

Get the maximum begin extent of the MPP.

int maxEndExt()

Get the maximum end extent of the MPP.

bool offGrid(int grid)

Return true if any MPP vertices are offgrid.

bool manhattan()

Return true if the MPP is Manhattan.

ptlist(Point *pts, int nPoints)

ptlist(int* x, int* y, int nPoints)

Set the MPP pointlist.

Point * ptlist()

August 30,
2023

GLADE REFERENCE MANUAL

288

Returns the point list of this mpp as an array or Points.

int nPoints()

Returns the number of points of the path.

int layer()

Returns the MPP layer, TECH_MPP_LAYER.

reshape(int* x int* y, int nPoints)

Reshape the MPP pointlist.

Rect bBox();

Get the bounding box of this mpp.

dbtype_t objType()

Returns the object type of this path as MPP.

const char* objName()

Returns the object name of this path as "MPP".

bias(int bias, int xgrid, int ygrid,)

Bias this mpp by bias, snapping to the grid xgrid and ygrid.

scale(double scale, double grid)

Scale this mpp by scale, snapping to the grid grid.

int getNearestEdge(const Point & p, segment & edge)

August 30,
2023

GLADE REFERENCE MANUAL

289

Get the distance of the nearest segment edge of this mpp to the point p

int getNearestVertex(const Point & p, vertex & vert)

Get the distance of the nearest vertex vert of this mpp to the point p

vertex * addVertex(Point &p)

Add a vertex to this mpp.

dbObjList<mpp> * chop(cellView *from, Rect &chopRect)

Chop a mpp by a chop rectangle chopRect.

transform(transform & trans)

Transform this mpp using trans.

bool ptInPoly(const Point & p)

Returns true if the Point p is contained in the mpp or on its edges.

Point getFirstVertex()

Get the first vertex in the mpp pointlist.

Point getLastVertex()

Get the last vertex in the mpp pointlist.

setLastVertex(Point p)

Set the last vertex of the mpp pointlist.

Point &point(int index)

August 30,
2023

GLADE REFERENCE MANUAL

290

Get the vertex of the mpp given by index.

setPoint(int index, Point &p)

setPoint(int I, int x, int y)

Set the vertex of the mpp given by index.

Point * createPolygon(mppLayer layer, Point *poly, int &nPoints, bool ccw=false)

Create a polygon from this mpp for a given layer.

bool addPoint(Point *p)

Add a Point to the end of the MPP pointlist.

Point deletePoint(int index)

Delete a vertex given by index.

Move(cellView *dest, Point delta, bool opt = True)

Move this mpp by distance delta. If opt is True then the database is re-optimised for the new mpp

position. If there are a lot of objects to move it makes sense to turn this off and instead use the

cellView update() function after moving them all.

dbObj *obj = Copy(cellView *dest, Point delta)

Copy this mpp to cellView dest, with offset delta.

dbObjList<dbObj> * Flatten(cellView *dest, transform trans)

Flatten this mpp into cellView dest with transformation trans.

Stretch(Point delta, segment seg, bool lock45=true, bool lockEnds=true)

August 30,
2023

GLADE REFERENCE MANUAL

291

Stretch segment seg of this mpp by delta. If lock45 is true, segments are snapped to diagonal. If

lockEnds are true, the start/end points are fixed and extra vertices added as necessary.

compressPoints();

Removes colinear points.

int length()

Returns the length of the polygon.

polygon * shapeToPoly ()

Converts this mpp to a polygon.

9.3.19 net class

The net class is normally created in a cellView using the dbCreateNet() function. A net is derived

from a dbObj . Nets have pins (which represent connections at this level of hierarchy with upper

levels of hierarchy) and instPins (which represent connections with instances, i.e. lower levels of

hierarchy). These provide a means for hierarchical connectivity from the pins on an instance of the

cellView to the instPins on instances in the cellView .

name(const char *name)

Sets the name of the net .

char* name()

Gets the net name.

dbtype_t objType()

Gets the net object type as NET

const char* objName()

August 30,
2023

GLADE REFERENCE MANUAL

292

Gets the net object name as "NET".

cellView * cellView()

Get the cellView this net is contained in.

instPin * dbCreateInstPin(inst* i, const char *pinName)

Creates an instPin for this net with instance i and pinname as the name of the pin .

instPin * dbCreateInstPin(const char *instName, const char *pinName)

Creates an instPin for this net with instname as the instance name and pinname as the name of the

pin .

dbDeleteinstPin(inst *i, char *pinName)

Deletes an instPin of this net, with instance I and pin name pinName.

dbDeleteinstPin(char *instName, char *pinName)

Deletes an instPin of this net, the instName and pinName are the names of the inst and pin.

dbDeleteInstPin(instPin *ip)

Deletes an instPin ip of this net .

int getNumInstPins()

Gets the number of inst pins for this net .

double getHPWL(double &x, double &y)

Gets the half perimeter wirelength of this net .

setUse(db_NetUse use)

August 30,
2023

GLADE REFERENCE MANUAL

293

Set the net use. The use can be one of DB_SIGNAL, DB_ANALOG, DB_CLOCK, DB_GROUND,

DB_POWER, DB_RESET, DB_SCAN, DB_TIEOFF, DB_TIEHI, DB_TIELO.

db_NetUse use()

Get the net use.

const char* getUseStr()

Get the net use as a string.

setSource(db_NetSource src)

Set the net source. The net source can be one of DB_DIST, DB_NETLIST, DB_TEST, DB_TIMING,

DB_USER.

db_NetSource source()

Get the net source.

const char* getSourceStr()

Get the net source as a string.

setPattern(db_NetPattern pat)

Set the net pattern. The net pattern can be one of DB_BALANCED, DB_STEINER, DB_TRUNK,

DB_WIREDLOGIC.

db_NetPattern pattern()

Get the net pattern.

const char* getPatternStr()

Get the net pattern as a string.

August 30,
2023

GLADE REFERENCE MANUAL

294

setGlobal(bool val)

Set the net global flag.

bool isGlobal()

Get the net global flag.

setSpecial(bool val)

Sets the net as a specialnet.

bool isSpecial()

Gets the net 's specialnet status.

setNonDefRule(int index)

Sets the net nondefault rule to index.

int getNonDefRule()

Get the index of the net’s nondefault rule.

setPins(dbObjList <pin > *pins)

Set the net 's pins from a dbObjList.

dbObjList<pin> * pins()

Get the net’s pins as a dbObjList.

[] getPins()

Gets the net 's pin as a python list.

August 30,
2023

GLADE REFERENCE MANUAL

295

n.addPin(pin *p)

Add a pin to this net .

n.setShapes(dbObjList <shape> *shapes)

Sets the net 's shape list.

dbObjList<shape> * shapes()

Get the net’s shapes as a dbObjList.

[] getShapes()

Gets the net 's shape list.

int getNumShapes()

Get the number of shapes associated with this net .

addShape(dbObj *shp)

Add a shape to the net 's shape list.

bool deleteShape(dbObj *shp)

Delete a shape from the net 's shape list. Returns true if successful.

int getNumInstPins()

Get the number of instPins connected to this net.

addInstPin(instPin *ip)

Add an instPin for this net .

August 30,
2023

GLADE REFERENCE MANUAL

296

dbObjList<instPin> * instPins()

Get the net’s instPins as a dbObjList.

[] getInstPins()

Get the net 's instPin as a python list.

dbObjList<signal> * getSignals()

Get the signals for this net as a dbObjList.

int numBits()

Get the number of bus bits in this net. For example out<0:3> returns 4.

const char* baseName()

Returns the basename of a bus net. For example out<0:3> returns “out”.

9.3.20 path class

The path class is derived from a shape. A path is represented by a list of vertices, plus a width, style,

beginExtent and endExtent. This class is normally created in a cellView using the dbCreatePath()

function.

bool offGrid(int grid)

Returns true if any of the path vertices are not on grid.

bool manhattan()

Returns true if the path is Manhattan.

August 30,
2023

GLADE REFERENCE MANUAL

297

width(int w)

Sets the path width to w.

int width()

Gets the path width.

p.style(int s)

Sets the path style, i.e. the type of the path end. The style can be one of: 0 - truncate, 1 - round, 2 -

extend, 4 - varextend, 8 - octagonal. Python global variables TRUNCATE, ROUND, EXTEND,

VAREXTEND, OCTAGONAL are defined to these values.

int s = p.style()

Gets the path style.

beginExt(int e)

Set the path begin extent. For a path style 2 (extend) or 4 (varextend) , this is the begin extent of the

path.

int beginExt()

Get the path begin extent. For a path style of 2 (extend) this is half the path's width. For a path style

4 (varextend), this is the begin extent of the path.

endExt(int e)

Set the path end extent. For a path style 2 (extend) or 4 (varextend), this is the end extent of the

path.

int endExt()

Get the path end extent. For a path style of 2 (extend) this is half the path's width. For a path style 4

(varextend), this is the end extent of the path.

August 30,
2023

GLADE REFERENCE MANUAL

298

Rect bBox()

Get the bounding box of this path.

bBox(const Rect & b)

Set the bounding box of this path. Not useful and will throw an exception if called.

dbtype_t objType()

Returns the object type of this path as PATH.

const char* objName()

Returns the object name of this path as "PATH".

int nPoints()

Returns the number of points of the path.

ptlist(int* x, int* y, int nPoints, bool compress=true)

ptlist(Point *pts, int nPoints, bool compress=true)

Set the path’s pointlist. If compress is true, colinear or duplicate points are removed.

Point * ptlist()

Returns the point list of this path as a C array of Points.

Point operator[]

Point at(index)

Returns the Point p at the index into the list of points.

Point & point(int index)

August 30,
2023

GLADE REFERENCE MANUAL

299

Get a vertex on this line at index.

setPoint(int index, const Point &p)

setpoint(int index, int x, int x)

Set a vertex on this line at index.

int length()

Returns the length of the path.

int getNearestEdge(const Point & p, segment &edge)

Get the distance of the nearest segment edge of this path to the point p

int getNearestVertex(const Point & p, vertex &vert)

Get the distance of the nearest vertex vert of this path to the point p

vertex * addVertex(Point &p)

Add a Point to the end of a path’s pointlist.

path * deleteSeg(cellView *from, segment *seg)

Delete a path segment. The path is returned.

reshape(int* x, int* y, int nPoints)

Reshape a path’s pointlist.

Point & origin()

Returns the path’s first vertex.

August 30,
2023

GLADE REFERENCE MANUAL

300

bias(int bias, int xgrid, int ygrid,)

Bias this path by bias, snapping to the grid xgrid and ygrid.

scale(double scale, double grid)

Scale this path by scale, snapping to the grid grid.

double area()

Get the area of this path.

int perimeter()

Get the perimeter of this path.

dbObjList<path> * chop(cellView *from, const Rect & chopRect)

Chop a path using the rectangle chopRect. A list of the new path(s) is returned.

setStyle(db_PathStyle s)

Sets the path style, i.e. the type of the path end. The style can be one of DB_TRUNCATED,

DB_ROUND, DB_EXTENDED, DB_VAREXTEND, DB_OCTAGONAL.

db_PathStyle getStyle()

Gets the path style.

setType(db_PathType t)

Sets the path type. The type can be one of DB_ROUTEDWIRE, DB_FIXEDWIRE, DB_COVERWIRE,

DB_NOSHIELD.

db_PathType getType()

Gets the path type.

August 30,
2023

GLADE REFERENCE MANUAL

301

const char* getTypeStr()

Gets the path type as a string.

setShape(db_PathShape s)

Sets the path shape. The shape can be one of DB_RING, DB_PADRING, DB_BLOCKRING, DB_STRIPE,

DB_FOLLOWPIN, DB_IOWIRE, DB_COREWIRE, DB_BLOCKWIRE, DB_BLOCKAGEWIRE, DB_FILLWIRE,

DB_DRCFILL.

db_PathShape getShape()

Gets the path shape.

const char* getShapeStr()

Gets the path shape as a string.

p.transform(transform &trans)

Transform this path using trans.

bool ptInPoly(const Point &p)

Returns true if the Point p is contained in the path or on its edges.

Point getFirstVertex()

Get the first vertex in the path pointlist.

Point getLastVertex()

Get the last vertex in the path pointlist.

Point * createPolygon(Point *poly, int & numPoints, bool makeCCW=false)

August 30,
2023

GLADE REFERENCE MANUAL

302

Create a polygon from this path. The user is responsible for deleting the Point * created.

bool addPoint(Point *p)

Adds a Point to the end of this path’s vertex list.

Point deletePoint(int index)

Delete a vertex on this path at index.

Move(cellView *dest, Point delta, bool opt = True)

Move this path by distance delta. If opt is True then the database is re-optimised for the new path

position. If there are a lot of objects to move it makes sense to turn this off and instead use the

cellView update() function after moving them all.

dbObj * Copy(cellView *dest, Point delta, int layer = -1)

Copy this path to cellView dest, with offset delta. If layer is a positive integer the path will be copied

to the new layer number.

dbObjList<dbObj> * Flatten(cellView *dest, transform &trans)

Flatten this path into cellView dest with transformation trans.

p.Stretch(Point delta, segment *seg, bool lock45=true, bool lockEnds=true)

Stretch segment seg of this path by delta. If lock45 is true, path edges will snap to diagonal. If

lockEnds is true, the start/end vertices of the path will be maintained and others added as

necessary.

p.compressPoints()

Removes colinear points from the path.

polygon *poly = p.shapeToPoly()

August 30,
2023

GLADE REFERENCE MANUAL

303

Converts this path to a polygon.

9.3.21 pin class

The pin class is normally created in a cellView using the dbCreatePin() function. A pin is derived

from a dbObj . You can create a logical pin using the cellView dbCreatePin() to create a physical pin.

You need to first create a logical pin , then use the cellView dbCreatePort() to assign a physical shape

to the pin .

name(const char* name)

Sets the pin 's name.

char *name()

Gets the pin name.

setDir(db_PinDirection dir)

Sets the pin direction. db_PinDirection can be one of DB_PIN_INPUT, DB_PIN_OUTPUT,

DB_PIN_INOUT, DB_PIN_FEEDTHRU, DB_PIN_TRISTATE.

db_PinDirection getDir()

Gets the pin direction.

setShape(db_PinShape s)

Sets the pin shape. db_PinShape can be one of DB_PIN_ABUTMENT, DB_PIN_RING, DB_PIN_FEED.

db_PinShape getShape()

Gets the pin shape.

setUse(db_PinUse use)

Sets the pin use. db_PinUse can be one of DB_PIN_SIGNAL, DB_PIN_ANALOG, DB_PIN_CLOCK,

DB_PIN_GROUND, DB_PIN_POWER, DB_PIN_RESET, DB_PIN_SCAN, DB_PIN_TIEOFF.

August 30,
2023

GLADE REFERENCE MANUAL

304

db_PinUse getUse()

Gets the pin use.

setNet(net * n)

Sets the pin 's net .

net * getNet()

Gets the pin 's net .

const char* getNetName()

Gets the pin 's net name as a string.

dbtype_t objType()

Gets the pin object type as PIN.

setPorts(dbObjList <shape> *ports)

Sets the pin 's port (physical shape) list.

dbObjList<shape> * ports()

Get the pin’s port (physical shape) list as a dbObjList.

[] = getPorts()

Gets the pin 's port (physical shape) list as a python list.

int p.getNumPorts()

Gets the number of port shapes for the pin .

August 30,
2023

GLADE REFERENCE MANUAL

305

p.addPort(shape *shp)

Adds a port shape to the pin .

bool deletePort(shape *shp)

Deletes a port shape from the pin.

9.3.22 Point class

A Point class represents a coordinate or xy pair.

Point

Creates a Point object p. The Point is initialised to (0, 0) by default.

Point (int x, int y)

Creates a Point object and initialises its coordinates.

int getX()

int getY()

Get the specified Point coordinate. The public member variables x and y can also be used directly.

setX(int x)

setY(int y)

set(int x, int y)

Set the specified Point coordinate.

operator ==

Returns true if the two Points are equal.

August 30,
2023

GLADE REFERENCE MANUAL

306

operator !=

Returns true if the two Points are not equal.

operator <

Returns true if the first point is 'less than' the second. First the X coordinate is compared; if equal

then the Y coordinate is compared.

operator >

Returns true if the first point is 'greater than' the second. First the X coordinate is compared; if equal

then the Y coordinate is compared.

operator +

A Point plus a Vector returns a Point offset by the Vector.

A Point plus a Point returns a Point , offset by the Point .

operator –

A Point minus a Vector returns a Point .

A Point minus a Point returns a Vector.

operator +=

A Point plus a scalar (i.e. an integer) is offset, or moved, by the value of the scalar in both X and Y.

A Point plus a Point returns a Point with the sum of the two Points X and Y values.

operator -=

A Point minus a Point returns a Point with the differrence of the two Points X and Y values.

operator *=

August 30,
2023

GLADE REFERENCE MANUAL

307

A Point times a scalar is scaled (multiplied) by the scalar.

9.3.23 pointList class

A pointList class represents a list (actually an array) of points.

pointList

Creates a pointList. If compress is true, colinear points are removed.

pointList pl = pointList (Point *pts, int num, bool compress = True)

Creates a pointList from the points specified by the array pts with size num. If compress is true, the

points will be sorted counterclockwise and colinear points removed.

pointList pl = Point (int *xpts, int *ypts, int num, bool compress = True)

Creates a pointList from the points specified by the arrays xpts and ypts with size num. If compress is

true, the points will be sorted counterclockwise and colinear points removed.

operator ==

Returns true if the two pointLists are equal.

operator !=

Returns true if the two pointLists are not equal.

operator <

Returns true if one pointList is less than another. 'Less' is the case is any vertex X or Y coordinate is

less than the other corresponding vertex.

setPtlist(const Point *pts, int num, bool compress = True)

August 30,
2023

GLADE REFERENCE MANUAL

308

Sets a pointList from the points specified by the array pts with size num. If compress is true, the

points will be sorted counterclockwise and colinear points removed.

setPtlist(int *xpts, int *ypts, int num, bool compress = True)

Sets a pointList from the points specified by the arrays xpts and ypts with size num. If compress is

true, the points will be sorted counterclockwise and colinear points removed.

setPtlist(const Rect & box)

Sets a pointList with the 4 vertices of a rectangle (LL, LR, UR, UL).

Point * points()

Get the raw pointList as an array of Points.

append(const Point & p)

Append the pointList with Point p.

append(const pointList & pl)

Append the pointList with pointList pl.

Point at(int idx)

Get the Point p given by the index idx.

int numPts()

Get the number of points in the pointList.

Rect bBox()

bBox(Rect &b)

Gets the bounding box of the pointList.

August 30,
2023

GLADE REFERENCE MANUAL

309

double area()

Gets the area of the pointList. This assumes the pointList is closed, i.e. there is an edge between the

last and first vertex.

int perimeter()

Gets the perimeter of the pointList. This assumes the pointList is closed, i.e. there is an edge

between the last and first vertex.

transform(transform &trans)

Transform all points in the pointList by trans.

scale(double factor, int grid)

Scales all points in a pointList by factor, snapping them to a grid grid (in database units)

compressPoints(bool ortho, bool xfirst)

Compresses all points in a pointList by removing all colionear points and ordering them

counterclockwise. If ortho is true, points are assumed to be manhattan and are stored in a more

compressed format.

bool isSelfIntersecting(bool isClosed = true)

Returns true if the pointList is self intersecting.

bool overlaps(pointList other, touching = false)

Returns true if one pointList overlaps another. If touching is true, returns true if the pointLists touch.

bool contains(const Point & p, bool touching = true)

Returns true if the pointList contains Point p. If touching is true, returns true if Point p touches an

edge of the pointList.

August 30,
2023

GLADE REFERENCE MANUAL

310

bool contains(const Rect & r, bool touching = true)

Returns true if the pointList contains Rect r. If touching is true, returns true if a vertex of Rect r

touches an edge of the pointList.

Point intersectsAt(const Edge & e)

Gets the first intersection of the Edge with the pointList.

bool isOrthogonal(bool isClosed = true)

Returns true if the pointList is orthogonal i.e. manhattan.

9.3.24 polygon class

The polygon class is derived from a shape. This class is normally created in a cellView using the

dbCreatePoly() function. Note that dbCreatePoly() will create a square or a rectangle if the polygon

has 4 points. A polygon is represented by a series of points, which represent the vertices of the

polygon. There is an implicit edge between the first and last point.

Rect bBox()

Get the bounding box of this polygon.

dbtype_t objType()

Returns the object type of this polygon as POLYGON.

const char* objName()

Returns the object name of this polygon as "POLYGON".

int nPoints()

Returns the number of points of the polygon's boundary. Note that polygons are not closed as they

are in GDS2.

August 30,
2023

GLADE REFERENCE MANUAL

311

Point * ptlist()

Returns the point list of this polygon as a C array of Points.

Point operator[]

Point at(index)

Returns the Point p at the index into the list of points.

bias(int bias, int xgrid, int ygrid,)

Bias this polygon by bias, snapping to the grid xgrid and ygrid.

scale(double scale, double grid)

Scale this polygon by scale, snapping to the grid grid.

int getNearestEdge(const Point & p, segment &edge)

Get the distance of the nearest segment edge of this polygon to the point p

int d = p.getNearestVertex(const Point & p, vertex &vert)

Get the distance of the nearest vertex vert of this polygon to the point p

bool ptInPoly(const Point & p)

Returns true if the point in inside or on the edge of the polygon.

double area()

Get the area of this polygon.

int perimeter()

August 30,
2023

GLADE REFERENCE MANUAL

312

Get the perimeter of this polygon.

p.transform(transform & trans)

Transform this polygon using trans.

Move(cellView *dest, Point delta, bool opt = True)

Move this polygon by distance delta. If opt is True then the database is re-optimised for the new

polygon position. If there are a lot of objects to move it makes sense to turn this off and instead use

the cellView update() function after moving them all.

dbObj *obj = Copy(cellView *dest, Point delta, int layer = -1)

Copy this polygon to cellView dest, with offset delta. If layer is non-negative the polygon will be

copied to the new layer number.

dbObjList<dbObj> * Flatten(cellView *dest, transform &trans)

Flatten this polygon into cellView dest with transformation trans.

Stretch(Point delta, segment *seg, bool lock45=true, bool lockEnds=true)

Stretch segment seg of this polygon by delta. If lock45 is true, edges are snapped to diagonal.

Stretch(Point delta, vertex *v)

Stretch vertex v of this polygon by delta.

compressPoints()

Removes colinear points, sets the point order to be counterclockwise and sets the first point to be

the smallest in X and Y.

bool selfIntersecting()

Returns true if the polygon is self-intersecting.

August 30,
2023

GLADE REFERENCE MANUAL

313

bool isOrthogonal()

Returns true if the polygon is orthogonal.

9.3.25 property class

The property class is used to represent a property list. It is not recommended to use it directly, use

the property functions for the dbObj and its derived classes.

9.3.26 Rect class

A Rect class is used to represent a rectangle comprising two coordinate pairs. Note that this is NOT

the same as a rectangle object which is a database object instead.

Rect

Creates a Rect object r. The rectangle coordinates are set to invalid i.e. llx = +infinity, urx = -infinity

etc.

Rect (Point ll, Point ur)

Creates a Rect object r and initialises it with Point types ll, ur.

Rect (int llx, int lly, int urx, int ury)

Creates a Rect object and initialises its coordinates.

int left()

int bottom()

int right()

int top()

Get the specified Rect coordinate.

August 30,
2023

GLADE REFERENCE MANUAL

314

setLeft(int x)

setBottom(int y)

setRight(int x)

setTop(int y)

Set the specified Rect coordinate.

Point getLL()

Point getUR()

Get the lower left or upper right Rect coordinates as Points.

invalidate()

Set the Rect to invalid, i.e. llx = +infinity, urx = -infinity etc.

scale(double s)

scale(int s)

Scale a Rect coordinates by dividing them by s.

Rect offset(int x, int y)

Offset (transpose) a Rect by the specified x and y coordinates. The Rect r is modified.

Rect moveTo(const Point &p)

Moves the Rect so its lower left origin is at Point p.

width(int w)

Set a Rect 's width. The lower left remains the same.

int width()

August 30,
2023

GLADE REFERENCE MANUAL

315

Get the width of a Rect .

height(int h)

Set the height of a Rect . The lower left remains the same.

int height()

Get the height of a Rect .

Point centre()

Get the centre point of a Rect .

bool isSquare()

Returns True is the rectangle is square, False if it is not.

transform(orient_t orient, const Point &p)

Transforms a Rect using Point p and orientation orient.

swapxy()

Swaps the X and Y coordinates of a Rect .

unionWith(const Rect &p)

Rect r is set to the union of the Rects r and p, i.e. the bounding box of both.

unionWith(const Point &p)

Rect r is set to the union of itself and Point p, i.e. the bounding box of both.

bool touchOrOverlaps(int x, int y)

August 30,
2023

GLADE REFERENCE MANUAL

316

Returns True if the Rect touches or overlaps the point x, y; returns False otherwise.

bool touchOrOverlaps(int xlo, int ylo, int xhi, int yhi)

Returns True if the Rect touches or overlaps the rectangle formed by xlo, ylo, xhi, yhi; returns False

otherwise.

bool touchOrOverlaps(const Rect &p)

Returns True if the Rect touches or overlaps the Rect p; returns False otherwise.

bool touch(int x, int y)

Returns True if the Rect touches the point x, y; returns False otherwise.

bool touch(int xlo, int ylo, int xhi, int yhi)

Returns True if the Rect touches the rectangle formed by xlo, ylo, xhi, yhi; returns False otherwise.

bool touch(const Rect &p)

Returns True if the Rect touches the Rect p; returns False otherwise.

bool overlaps(int x, int y)

Returns True if the Rect overlaps the point x, y; returns False otherwise.

bool overlaps(int xlo, int ylo, int xhi, int yhi)

Returns True if the Rect overlaps the rectangle formed by xlo, ylo, xhi, yhi; returns False otherwise.

bool overlaps(const Rect &p)

Returns True if the Rect overlaps the Rect p; returns False otherwise.

bool contains(int x, int y)

August 30,
2023

GLADE REFERENCE MANUAL

317

Returns True if the Rect contains the point x, y; returns False otherwise.

bool contains(int xlo, int ylo, int xhi, int yhi)

Returns True if the Rect contains the rectangle formed by xlo, ylo, xhi, yhi; returns False otherwise.

bool contains(const Rect &p)

Returns True if the Rect contains the Rect p; returns False otherwise.

intersectsWith(const Rect &p)

Modifies Rect r to the intersection of itself and Rect p.

Rect intersectsWith(const Rect &p)

Returns a rectangle which is the intersection of r and p.

9.3.27 rectangle class

The rectangle class is derived from a shape. This class is normally created in a cellView using the

dbCreateRect() function.

int left()

int bottom()

int right()

int top()

Get the coordinates of the rectangle.

setLeft(int x)

setBottom(int y)

setRight(int x)

August 30,
2023

GLADE REFERENCE MANUAL

318

setTop(int y)

Set the coordinates of the rectangle.

Point origin()

Get the origin (lower left) of this rectangle.

int width()

Get the width of this rectangle.

width(int w)

Set the width of this rectangle. The origin is maintained.

int height()

Get the height of this rectangle.

height(int h)

Set the height of this rectangle. The origin is maintained.

Point centre()

Get the centre of a rectangle.

Rect bBox()

Get the bounding box of this rectangle.

bBox(Rect b)

Set the bounding box of this rectangle. This will change the size of the rectangle.

August 30,
2023

GLADE REFERENCE MANUAL

319

dbtype_t objType()

Returns the object type of this rectangle as RECTANGLE.

const char * objName()

Returns the object name of this rectangle as "RECTANGLE".

int nPoints()

Returns the number of points of the rectangle's boundary as 4.

Point * ptlist()

Returns the point list of this rectangle as a C array of 4 points.

polygon * shapeToPoly()

Returns a polygon with a pointlist identical to this rectangle.

bias(int bias, int xgrid, int ygrid,)

Bias this rectangle by bias, snapping to the grid xgrid and ygrid.

scale(double scale, double grid)

Scale this rectangle by scale, snapping to the grid grid.

int getNearestEdge(const Point & p, segment &edge)

Get the distance of the nearest segment edge of this rectangle to the point p;

int getNearestVertex(const Point & p, vertex &vert)

Get the distance of the nearest vertex vert of this rectangle to the point p;

August 30,
2023

GLADE REFERENCE MANUAL

320

double area()

Get the area of this rectangle.

int perimeter()

Get the perimeter of this rectangle.

transform(transform & trans)

Transform this rectangle using trans.

bool ptInPoly(const Point &p)

Returns True if the point is contained in or on the edge of the rectangle.

Move(cellView *dest, Point delta, bool opt = True)

Move this rectangle by distance delta. If opt is True then the database is re-optimised for the new

rectangle position. If there are a lot of objects to move it makes sense to turn this off and instead

use the cellView update() function after moving them all.

dbObj *obj = Copy(cellView *dest, Point delta, int layer = -1)

Copy this rectangle to cellView dest, with offset delta. If layer is non negative the rectangle will be

copied to the new layer number.

dbObjList<dbObj> * Flatten(cellView *dest, transform trans)

Flatten this rectangle into cellView dest with transformation trans.

Stretch(Point delta, segment *seg)

Stretch segment seg of this rectangle by delta.

Stretch(Point delta, vertex *v)

August 30,
2023

GLADE REFERENCE MANUAL

321

Stretch vertex v of this rectangle by delta.

9.3.28 segment class

A segment is an edge of a dbObj with two points. It is derived from a dbObj so it can be selectable;

it also references its parent dbObj . Segments are used when selecting an edge of e.g. a rectangle or

polygon.

segment(const Point & p0, const Point & p1)

Creates a segment with coordinates p0 and p1.

segment(int x1, int y1, int x2, int y2)

Creates a segment with the specified xy coordinates.

int length()

The Euclidean length of this segment.

double DistanceToPoint(const Point & p)

Get the distance from a point p to this segment.

Point NearestPoint(const Point & p)

Get the nearest point on a segment to another point.

dbtype_t objType()

Returns the objects type - SEGMENT.

SetObj(dbObj * obj)

Sets the dbObj associated with this segment.

August 30,
2023

GLADE REFERENCE MANUAL

322

dbObj * GetObj()

Gets the dbObj associated with this segment.

bool isXSeg()

Returns True if this segment is horizontal, else False.

bool isYSeg()

Returns True if this segment is vertical, else False.

bool isManhattan()

Returns True if this segment is manhattan, else False.

Rect bBox()

Returns a fake bounding box 10 dbu larger than the segment itself.

bool segInRect(const Rect & r)

Returns True if the segment is contained in Rect r.

seg.transform(transform & trans)

Transforms this segment according to trans.

seg.Move(cellView * dest, Point delta, bool opt = True)

Moves this segment by delta. If opt is True then the database is re-optimised for the new segment

position. If there are a lot of objects to move it makes sense to turn this off and instead use the

cellView update() function after moving them all.

Point p0

The first point of the segment.

August 30,
2023

GLADE REFERENCE MANUAL

323

Point p1

The last point of the segment.

9.3.29 dbSegParam class

The dbSegParam class is a utility class to manage HSeg/VSeg attributes. SegParams are added to the

library table using the library function addSegParam()

setLayer(int layer)

Set the segParam layer.

int layer()

Get the segParam layer.

lib(library *l)

Set the segParam library.

library * lib()

Get the segParam’s library.

setWidth(int w)

Set the segParam width.

int width()

Get the segParam width.

setBeginExt(int ext)

Set the segParam begin extent.

August 30,
2023

GLADE REFERENCE MANUAL

324

int beginExt()

Get the segParam begin extent.

setEndExt(int ext)

Set the segParam end extent.

int endExt()

Get the segParam end extent.

setStyle(int s)

Set the segParam style.

int style()

Get the segParam style.

9.3.30 shape class

The shape class is derived from a dbObj . Shapes have layer and net information; a shape is not

normally used directly but one of its derived classes is instead.

layer(int layer)

Set the layer of this shape. Provided for backward compatibility only.

int layer()

Get the layer of this shape. Provided for backward compatibility only.

setNet(net *n)

August 30,
2023

GLADE REFERENCE MANUAL

325

Set the net associated with this shape. The shape is removed from any current net and added to the

specified net.

net * getNet()

Get the net associated with this shape.

const char* getNetName()

Get the net name of the net associated with this shape.

9.3.31 signal class

The signal class is used to manage signals of a net.

signal(net *n)

Creates a signal associated with net n.

setName(const char *name)

Sets the signal name.

char * name()

Get the signal name.

setNet(net *n)

Set the signal’s net.

net * net()

Get the signal net.

db_type_t objType()

August 30,
2023

GLADE REFERENCE MANUAL

326

Get the signals object type (SIGNAL).

const char *objName()

Get the signal object name (“SIGNAL”)

9.3.32 techFile class

The techFile class contains technology related parameters, in particular the layers used in a design. A

techFile object does not normally need to be created as creating a library will initialise a techFile

associated with that library . For example:

lib = library ("myLib")
tech = lib.tech()

bool techLoad(const char *filename, bool merge = true, bool verbose = true)

Loads a techFile specified by fileName. If merge is true, the techfile is merged into the existing

techfile, else existing techfile data is deleted. If verbose is false, erors and warnings to the logfile are

suppressed.

bool tech.techSave(char *filename, bool saveSystem)

Saves a techFile to fileName. If saveSystem is true, the system layer data is saved in addition to user

layers.

lib(library *l)

Set the library for this techfile.

library * lib()

Get the library for this techfile.

9.3.32.1 Layer related operations

Layers are signed 16 bit integers and map to layer-purpose pairs. A layer number of -1 signifies an

invalid layer.

August 30,
2023

GLADE REFERENCE MANUAL

327

bool isSelectable(int layer)

Returns true if layer is selectable, else returns false.

selectable(int layer, bool sel)

Sets a layer selectable if sel is true.

bool isVisible(int layer)

Returns true if layer is visible, else returns false.

visible(int layer, bool vis)

Sets a layer visible if vis is true.

bool isUsed(int layer)

Returns true if layer is used, else returns false.

bool isActive(int layer)

Returns true if layer is used in the current canvas, else returns false.

int color(int layer)

Returns a 32 bit integer of the layer color in rgba format.

color(int layer, int color)

Sets a layer color. color is a 32 bit integer in rgba format.

setLayerName(int layer, const char* name)

Sets a layer's name, e.g. “metal1”

August 30,
2023

GLADE REFERENCE MANUAL

328

const char* getLayerName(int layer)

Gets the layer's name.

setLayerPurpose(int layer, const char* name)

Sets a layer's purpose name, e.g. “drawing”

const char* getLayerPurpose(int layer)

Gets the layer's purpose name.

const char* getLayerPurposePair(int layer)

Gets the layer's layer-purpose pair name e.g. "metal1 drawing".

setLayerGdsLayer(int layer, int gdsNum)

Sets a layer's GDS number to gdsNum.

int getLayerGdsLayer(int layer)

Gets a layer's GDS number.

setLayerDataType(int layer, int gdsNum)

Sets a layer's GDS datatype to gdsNum.

int getLayerDataType(int layer)

Gets a layer's GDS datatype.

int getLayerNum(char* name, char* purpose, bool warn=true)

Gets a layer number if one exists with the specified name and purpose. If it does not exist a warning

is given unless warn is set to false.

August 30,
2023

GLADE REFERENCE MANUAL

329

int createLayer(char*name, char* purpose)

Creates a layer in the techFile with the specified name and purpose. Returns the layer number or -1

if the layer cannot be created.

bool deleteLayer(int layer)

Deletes an existing layer. This will delete all shapes on the layer, for all cellViews in the library.

setLayerType(int layer, int type)

Sets the layer type. type can be one of T_CUT, T_ROUTING, T_BLOCKAGE, T_PIN, T_OVERLAP,

T_WELL, T_DIFFUSION, T_POLY, T_IMPLANT, T_MASTERSLICE or T_NONE.

int getLayerType(int layer)

Gets the layer type.

const char* getLayerTypeAs Str(int layer)

Gets the layer type as a string, i.e. CUT, MASTERSLICE, ROUTING, BLOCKAGE, PIN, OVERLAP, WELL,

DIFFUSION, POLY, IMPLANT or NONE.

setLayerWidth(int layer, int width)

Sets the layer MINWIDTH.

int getLayerWidth(int layer)

int getLayerWidth(char* layerName, char* purpose)

Gets the layer MINWIDTH.

setLayerSpacing(int layer, int spacing)

Sets the layer MINSPACE.

August 30,
2023

GLADE REFERENCE MANUAL

330

int getLayerSpacing(int layer)

int getLayerSpacing(const char* layerName, const char* purpose)

Gets the layer MINSPACE.

set2LayerSpacing(int layer1, int layer2, int space)

Sets the layer1 to layer2 MINSPACE.

int get2LayerSpacing(int layer1, int layer2)

int get2LayerSpacing(const char* layerName1, const char* purpose1, const char* layerName2,

const char* purpose2)

Gets the layer1 to layer2 MINSPACE.

setLayerEnc(int layer1, int layer2, int enclosure)

Sets the layer1 to layer2 MINENC. Layer1 encloses layer2 by enclosure.

int getLayerEnc(int layer1, int layer2)

int getLayerEnc(const char* layerName1, const char* purpose1, const char* layerName2, const

char* purpose2)

Gets the layer1 to layer2 MINENC.

setLayerExt(int layer1, int layer2, int extension)

Sets the layer1 to layer2 MINEXT. Layer1 extends beyone layer2 by extension.

int getLayerExt(int layer1, int layer2)

int getLayerExt(const char* layerName1, const char* purpose1, const char* layerName2, const

char* purpose2)

Gets the layer1 to layer2 MINEXT.

August 30,
2023

GLADE REFERENCE MANUAL

331

setLayerArea(int layer, int area)

Sets the layer MINAREA.

int getLayerArea(int layer)

int getLayerArea(const char* layerName, const char* purpose)

Gets the layer MINAREA.

setLayerPitch(int layer, int pitch)

Sets the layer pitch.

int getLayerPitch(int layer)

Gets the layer pitch.

setLayerDir(int layer, int dir)

Sets the layer routing direction. The routing direction can be LAYER_HORIZONTAL or

LAYER_VERTICAL.

setLayerOffset(int layer, int pitch)

Sets the layer routing offset.

int getLayerOffset(int layer)

Gets the layer routing offset.

int getLayerDir(int layer)

Gets the layer routing direction.

const char* getLayerDirAsStr(int layer)

Gets the layer routing direction as a string.

August 30,
2023

GLADE REFERENCE MANUAL

332

setLayerResistance(int layer, double r)

Sets the layer resistance.

double getLayerResistance(int layer)

Gets the layer resistance.

setLayerAreaCap(int layer, double c)

Sets the layer area capacitance.

double getLayerAreaCap(int layer)

Gets the layer area capacitance.

setLayerEdgeCap(int layer, double c)

Sets the layer edge capacitance.

double getLayerEdgeCap(int layer)

Gets the layer edge capacitance.

setLayerByOrder(int layer, int order)

Sets the layer order.

int getLayerByOrder(int layer)

Gets the layer order.

int changeLayerOrder(int source, int dest)

Swaps the order of layers source and dest.

August 30,
2023

GLADE REFERENCE MANUAL

333

int getLayerUp(int layer)

Gets the next routing layer ‘up’ from layer.

int getLayerDown(int layer)

Gets the next routing layer ‘down’ from layer.

setLineStyle(int layer, int style)

Sets the layer linestyle

int getLineStyle(int layer)

Gets the layer linestyle.

setLineWidth(int layer, int width)

Sets the layer linewidth.

int getLineWidth(int layer)

Gets the layer linewidth.

setFillPattern(int layer, unsigned char*, bool exists=false, char* name = NULL, int xbits=16, int

ybits=16)

Sets the layer fill pattern. The bit array is 128 bytes; a 32x32 bit (32 x 4 byte) stipple is stored

internally. If a smaller stipple is passed e.g. 16x16 bit (16 x 2 byte) then the bit pattern is extended to

32 bits.

unsigned char* getFillPattern(int layer)

Gets the layer fill pattern as an array of 128 bytes.

August 30,
2023

GLADE REFERENCE MANUAL

334

const char* getFillName(int layer)

Gets a fill pattern name for the layer.

setFillType(int layer)

Gets the layer fill type. Can be one of F_HOLLOW, F_SOLID, F_CROSSED, F_STIPPLE.

int getFillType(int layer)

Gets the layer fill type. Can be one of F_HOLLOW, F_SOLID, F_CROSSED, F_STIPPLE.

int getCurrentLayer()

Gets the current layer as set by the LSW.

const char* getLineName(int layer)

Gets the layer’s linestyle name.

int getNumLines()

Gets the number of linestypes in the line table.

setLayerDimFactor(int layer, int percent)

Sets the layer dim factor to percent.

int getLayerDimFactor(int layer)

Gets the dim factor of layer.

setLayerHeight(int layer, int thickness)

Sets the layer height of layer to thickness (in database units)

August 30,
2023

GLADE REFERENCE MANUAL

335

int getLayerHeight(int layer)

Gets the layer height.

setLayerThickness(int layer, int thickness)

Sets layer thickness (in database units)

int getLayerThickness(int layer)

Gets the layer thickness.

setLayerEpsilon(int layer, double epsilon)

Sets layer epsilon.

int getLayerEpsilon(int layer)

Gets the layer epsilon.

bool isMetal(int layer)

Returns True if layer is a routing layer.

bool isVia(int layer)

Returns True if layer is a cut layer.

setMfgGrid(double grid)

Sets the manufacturing grid, in microns.

double mfgGrid()

Gets the manufacturing grid in microns.

August 30,
2023

GLADE REFERENCE MANUAL

336

9.3.33 transform class

The transform class contains functions to transform coordinates in subcells placed with offset,

rotation and magnification.

A a point with coordinates x, y can be transformed by a transformation matrix T by:

[x', y', 1] = [x, y, 1]T

The transformation matrix for an offset (a,b) with no rotation or magnification can be described as

 T = [1 0 0]
 [0 1 0]
 [a b 1]

Rotations are e.g.

 T90 = [0 1 0]
 [-1 0 0]
 [0 0 1]

transform (orient_t orient, const Point & p, double scale)

Construct a transform with orientation orient, origin p and magnification scale. The orientation can

be specified by the constants R0, R90, R180, R270, MX, MXR90, My, MYR90.

transform (orient_t orient, const Point & p)

transform (orient_t orient, int x, int y)

Construct a transform with orientation orient, origin p or x/y.

transform (orient_t orient)

Construct a transform with orientation orient.

transform ()

Construct a transform with orientation R0.

invert()

Invert a transformation matrix

August 30,
2023

GLADE REFERENCE MANUAL

337

inverseTransformRect(Rect & box)

Transform a Rect by the inverse of the transformation matrix. Useful if you want to take a Rect and

transform it into the coordinate space of an instance with a transform. For example if you want to

find if any shapes in an instance overlap a search box for a top level cell, use the inverse transform of

the search box on all the instance's shapes. This means doing just one transform of the search box

rather than one transform for each shape in the instance.

inverseTransformPoint(Point & p)

inverseTransformPoint(int x, int y)

Transform a Point by the inverse of the transformation matrix

transformRect(Rect & box)

Transform a Rect by the transformation matrix

transformRect(Rect & box, Point & origin)

Transform a Rect by the transformation matrix about a point origin.

transformPoint(Point & p)

Transform a Point by the transformation matrix

transformPoint(Point &p, Point &origin)

Transform a point by the transformation matrix about a point origin.

transformPointList(Point * ptlist, int size)

Transform an array of points of size size by the transformation matrix.

transformPointList(Point * ptlist, int size, Point & origin)

Transform an array of points of size size by the transformation matrix about a point origin.

August 30,
2023

GLADE REFERENCE MANUAL

338

setOrient(orient_t orient)

Set the transformation matrix orientation

orient_t getOrient()

Get the transformation matrix orientation.

setOrigin(const Point & p)

setOrigin(int x, int y)

Set the transformation origin.

Point getOrigin()

Get the transformation origin.

setMag(double scale)

Set the transformation matrix scale.

bool isXYSwapped()

Returns True if the transformation is such that the objects XY coordinates would be swapped, e,g, if

the object is R90.

9.3.34 ui class

All of the following functions are part of the ui class. There is a global pointer to the gui called

cvar.uiptr . Therefore to use them, define you own variable e.g. gui=cvar.uiptr, then call

as gui.OpenCellView(...)

editFile(const char* fileName=null)

Edit or view a file. If fileName is not specified, a file open dialog is displayed, else the file given by

fileName will be opened. This function does nothing in non-graphics mode.

August 30,
2023

GLADE REFERENCE MANUAL

339

execPythonFile (const char* fileName)

Execute the python script given by fileName.

Load(const char *moduleName)

Loads a python module, but does not execute it.

bool loadPCell(const char* libName, const char* pcellName)

Loads the PCell with name pcellName into the library libName. If the PCell already exists in the

library , the action is ignored and returns true. If a cellView with the same name exists, it is deleted

and is replaced by the PCell supermaster. Note that once a PCell is loaded into a library and that

library is saved, it will remain a PCell, so there is no need to load it again (although it is harmless and

you will just get warnings about the load being ignored). If the PCell cannot be created, it returns

false.

cellView * getEditCellView()

Returns the current cellview being edited. If multiple cellviews are open, it returns the cellview of

the current active window. There is also a top level python binding to this function,

getEditCellView().

library * getLibByName(char *name)

Returns the library given by name.

dbObjList<library> * getLibList()

Returns a dbObjList of all open libraries. There is also a top level python binding of the same name

that returns a python list of open libraries.

dbObjList<cellView> * getCellList()

Returns a dbObjList of all open cellViews. There is also a top level python binding of the same name

that returns a python list of open cellViews. This function returns None in non-graphics mode.

August 30,
2023

GLADE REFERENCE MANUAL

340

bool deleteLib(library *lib)

Deletes a library. All the library’s cellViews will be cleared from virtual memory.

bool newCell(const char *libName, const char *cellName, const char *viewName, db_viewType

viewType=maskLayout, const char *pCellName=NULL, bool isPCell=false, bool openCell=true)

Creates a new cellView and returns true if successful. The cellView is specified by its libName,

cellName and viewName. The viewType is the type of view, which controls which editor is used to

open the cellView. If isPCell is true, the cellView created is a PCell and its PCell python code is

specified by the module name given by pCellName. If openCell is true, the cell is opened in the GUI.

bool openCellView (const char* libName, const char* cellName, const char* viewName)

Opens the cellview specified by libName, cellName and viewName in a new window. This function

does nothing in non-graphics mode.

bool closeCellView(const char* libName, const char* cellName, const char* viewName)

Closes the cellView window. This function does nothing in non-graphics mode.

fileSaveLibAs(const char *libName, const char *libPath, bool verbose=true, bool saveCells=true)

Saves a library with name libName to the full path specified by libPath. If verbose is true, detailed

info is written of the cells saved. If saveCells is true, all cells are saved, else only the library techfile is

saved.

closeLib(const char* libName)

Closes the library specified by libName. If cellViews from that library are displayed, their windows

will be closed. The library is removed from the list of open libraries. No checking is performed for

edited cells. This function does nothing in non-graphics mode.

updateLibBrowser()

Updates (refreshes) the library browser. This function does nothing in non-graphics mode.

updateLSW()

August 30,
2023

GLADE REFERENCE MANUAL

341

Updates (refreshes) the LSW. This function does nothing in non-graphics mode.

bool isLayerVisible(const char *layerName, const char *purpose)

Returns True if the layer specified by layerName and purpose is visible in the current cellView or

False if it is invisible, or there is no current cellView . This function does nothing in non-graphics

mode.

bool isLayerSelectable(const char *layerName, const char *purpose)

Returns True if the layer specified by layerName and purpose is selectablein the current cellView or

False if it is invisible, or there is no current cellView . This function does nothing in non-graphics

mode.

bool setLayerVisible(const char *layerName, const char *purpose, bool val)

Returns True if the layer specified by layerName and purpose can be set visible in the current

cellView or False if there is no current cellView . This function does nothing in non-graphics mode.

bool setAllVisible(bool val)

Sets the visibility of all user layers in the current cellView according to val. This function does

nothing in non-graphics mode.

bool setLayerSelectable(const char *layerName, const char *purpose, bool val)

Returns True if the layer specified by layerName and purpose can be set visible in the current

cellView or False if there is no current cellView . This function does nothing in non-graphics mode.

bool setAllSelectable(bool val)

Sets the selectability of all user layers in the current cellView according to val. This function does

nothing in non-graphics mode.

addMarker(int x, int y, int size=20, int lineWidth=0, color=Qt::yellow)

August 30,
2023

GLADE REFERENCE MANUAL

342

Adds a marker at the specified x and y values (given in database units). The size of the marker

defaults to 20 dbu and the linewith to 0 (i.e. one pixel wide). This function does nothing in non-

graphics mode.

clearMarkers()

Clears all markers.

addHilite(dbHierObj obj, int red, int green, int blue, int alpha=255)

addHilite(dbObj class* obj, int red, int green, int blue, int alpha=255)

Adds a highlight to the object given by obj with colour given by the rgba values. This function does

nothing in non-graphics mode.

addHilite(net *net, int red, int green, int blue, int alpha=255)

Adds a highlight to the net shapes given by net with colour given by the rgba values. This function

does nothing in non-graphics mode.

addHilite(const char *name, int red, int green, int blue, int alpha=255)

Adds a highlight to the net shapes given by name with colour given by the rgba values. This function

does nothing in non-graphics mode.

addHiliteByLayer(const char *name, int lyr, int red, int green, int blue, int alpha=255)

Adds a highlight to the net shapes on layer lyr given by name with colour given by the rgba values.

This function does nothing in non-graphics mode.

addHilite (const Rect &box, int red, int green, int blue, int alpha=255)

Adds a highlight with the geometry defined by box and with colour given by the rgba values. This

function does nothing in non-graphics mode.

addHilite (int x1, int y1, int x2, int y2, int red, int green, int blue, int alpha=255)

Adds a highlight with the geometry defined by x1, y1, x2, y2 and with colour given by the rgba

values. This function does nothing in non-graphics mode.

hiliteSubNetsByCap(const char *name, int alpha=128)

Adds a highlight to the subnet shapes for the net given by name. The colour of each subnet shape is

a colourmap from blue to magenta and white. The transparency can be set by alpha. This function

does nothing in non-graphics mode.

clearHilites()

Clears all highlighted objects. This function does nothing in non-graphics mode.

August 30,
2023

GLADE REFERENCE MANUAL

343

dbObjList<dbObj> * getSelectedSet()

Returns a dbObjList of the selected set. There is also a top level python binding of the same name

that returns a python list of selected objects. This function does nothing in non-graphics mode.

selectObj(dbObj *obj)

Selects an object. The existing selection list is cleared. This function does nothing in non-graphics

mode.

selectObj(net *net)

Selects shapes for the net net. The existing selection list is cleared. This function does nothing in

non-graphics mode.

deselectObj(dbObj *obj)

Deselects an object. This function does nothing in non-graphics mode.

deselectObj(net *net)

Deselects shapes for a net net. This function does nothing in non-graphics mode.

addSelected(dbObj *obj)

Adds the object to the selected set. This function does nothing in non-graphics mode.

addSelected(net *net)

Adds the net shapes to the selected set. This function does nothing in non-graphics mode.

selectAll ()

Select all objects in the current canvas cellView. This function does nothing in non-graphics mode.

August 30,
2023

GLADE REFERENCE MANUAL

344

deselectAll ()

Deselect all objects in the current canvas cellView. This function does nothing in non-graphics mode.

selectArea (int x1, int y1, int x2, int y2, bool add = 0)

Select objects in the area given by x1 y1 x2 y2. If add is true, then the objects are added to the

selected set. This function does nothing in non-graphics mode.

deselectArea (int x1, int y1, int x2, int y2)

Deselect objects in the area given by x1 y1 x2 y2. This function does nothing in non-graphics mode.

selectPoint (int x1, int y1, bool add = 0)

Select an object at the coordinate x1 y1. If add is true, then the object is added to the selected set.

This function does nothing in non-graphics mode.

deselectPoint (int x1, int y1)

Deselect an object at the coordinate x1 y1. This function does nothing in non-graphics mode.

moveSelected(Point delta, orient_t orient)

Moves the selected set by delta, optionally rotating it by orient. This function does nothing in non-

graphics mode.

copySelected(Point delta, orient_t orient)

Copies the selected set, moving the copy by delta, optionally rotating it by orient. This function does

nothing in non-graphics mode.

bool importTech(const char *libName, const char *techFileName, unsigned int dbu=1000)

Imports the techFile techFileName into the library libName. The library is created if it does not

already exist. Returns true if no error occurred.

August 30,
2023

GLADE REFERENCE MANUAL

345

bool exportTech(const char *libName, const char *techFileName, bool systemLayers)

Exports the techFile techFileName from the library libName. The library must exist. If systemLayers

is 1, Glade system layers e.g. cursor, backgnd etc will be written to the techFile. This is only

necessary if you have modified the system layers in the LSW - for example changed the backgnd

color from black to white. Returns true if no error occurred.

bool importGds2 (const char* libName, const char* gdsFileName, const char* dumpFile = “”, int

csen = 0, bool do_dump = false, double gdsScaleFactor = 1.0, double gdsXOffset = 0.0, double

gdsYOffset = 0.0, int gdsNetAttr = 0, int gdsDevAttr = 0, int gdsInstAttr = 0, bool compressed=false,

bool dubiousData=true, bool setDBUfromGDS=true, bool reportCells=false, int pathConv=2, int

convLayers=0, int layer=0, int datatype=0, bool openTopCell=false, bool setLibName=false, bool

convertVias=false, int duplicates=0, const char *viewName="layout", bool importPCells=false)

Import the GDS2 file gdsFileName into library libName. The library is created if it does not already

exist. If do_dump is 1 and dumpFile is a valid file name, the GDS2 will be written in an ascii format

suitable for debugging purposes. gdsScaleFactor can be used to scale all coordinates in the GDS2 file.

gdsXOffset and gdsYOffset can be used to apply a fixed offset to all GDS2 coordinates. gdsNetAttr

specifies the GDS2 attribute number used for net names, if present, gdsDevAttr specifies the GDS2

attribute number used for device names (devName property) and gdsInstAttr specifies the GDS2

attribute number for instance names, if present. If compressed is true, a gzip compressed format file

is expected and will be uncompressed during stream in. If dubiousData is true, dubious data

constructs in the GDS2 file are reported. If setDBUfromGDS is true, the library DBUperUU is set from

the GDS DBU. If reportCells is true, cells are reported in the message window as they are read.

pathconv is used to control 2 point path conversion. If set to 0, 2 point manhattan paths are

converted to rectangles. If set to 1, 2 point manhattan paths are set to H/VSegs. If set to 2 (the

default), paths remain as paths. convLayers determines which layers are imported. If set to 0 (the

default), all layers found in the GDS2 file are converted. If set to 1, only layers that are defined in the

techFile with gds layer number/datatypes are imported. If set to 2, only a single layer will be

imported, defined by layer and datatype. If openTopCell is true, all potential top cell candidates are

opened in the gui. A top cell candidate is any cell that is not referenced by another cell, and is not

empty. If setLibName is true, the library name is set to that of the GDS2 library name. If convertVias

is true, Glade will convert via cells to Glade vias, and instances of these via cells to viaInsts.

duplicates controls handling of duplicate cell definitions. If 0, duplicate cells replace any existing cell

definitions. If 1, duplicate cells definitions are ignored. If 2, duplicate cell data is merged into existing

cells. viewName sets the view name of cellViews created during import GDS2. If importPCells is True,

PCell information is imported from GDS2 properties written by exportGds2.

bool exportGds2 (const char* libName, const char* viewNames, const char* gdsFileName, bool

outputNetAttrs=false, bool outputDevAttrs=false, bool outputInstAttrs=false, bool

outputAllCells=true, char * topCellName =NULL, int netAttr=0, int devAttr=0, int instAttr=0, bool

compressed=false, bool reportCells=false, double grid=0.005, bool writeViaCells=false, int

polyVertexLimit=8192, bool singleNet = false, const char *netName="", bool exportPCells=false)

August 30,
2023

GLADE REFERENCE MANUAL

346

Export a GDS2 file gdsFileName from the library libName. viewNames is a space seperated list of

view names to export. If outputAllCells is true then all cells in the library are output to the GDS2 file

and topCellName is ignored. If outputAllCells is false then topCellName is a space or comma

delimited list of cells to output. If outputNetAttrs is true then net names are output as GDS2

attributes with attribute number given by netAttr. If outputDevAttrs is true then device names

(devName property) are output as GDS2 attributes with attribute number given by devAttr. If

outputInstAttrs is true then instance names are output as GDS2 attributes with attribute number

given by instAttr. If compressed is true the GDS2 file is written in gzip compressed format according

to RFC1951. If reportCells is true, cells are reported in the message window as they are written. grid

specifies the manufacturing grid, used to snap vertices of circles/ellipses as they are converted to

polygons on export. writeViaCells if true will write vias as cells and viaInsts as instances, else vias will

get flattened. polyVertexLimit sets the maximum number of vertices for the polygon; polygons with

more vertices will be decomposed into trapezoids. If singleNet is true, then only shapes and vias with

net attributes and a net name matching netName will be output. If exportPCells is true, PCell

information is exported as GDS2 properties that can be read by importGds2.

bool importLef (const char* libName, const char* lefFileName, bool compressed= false, bool

generateLabels= true, float size=0.25. bool allPinShapes=false)

Import a LEF file lefFileName into the library libName. The library will be created if it does not

already exist. If compressed is true a gzip compressed format file is expected and will be

uncompressed during LEF in. If generateLabels is true, text labels will be generated on the Text layer

for each pin in the LEF macro. size sets the size of the generated labels. If allPinShapes is true (1),

then text labels are generated for all pin shapes.

bool exportLef (const char* libName, const char* lefFileName, bool technology=true, bool

allCells=true, const char *cellName=NULL, const char* viewName=”abstract”, const char*

powerNets=NULL, const char* groundNets=NULL , bool separatePorts=false, bool

writeNonDefRules=true)

Export a LEF file lefFileName from library libName. If technology is true, the LEF technology section

will be included in the LEF file. If allCells is true, all library cells will be output, else only the current

open cellView will be output. The string powerNets is a space delimited list of net names. Any pins

with a name in this list will have their +USE attribute set to POWER. Similarly, the string groundNets

is a space delimited list of net names; any pins with a name in this list will have their +USE attribute

set to GROUND.

bool importDef (const char* libName, const char* viewName, const char* defFileName, bool

ecoMode=false, bool compressed=false, bool reportMissingPins=true, bool importSpecial=true,

bool importRegular=true, bool reportUnplacedComps=false)

August 30,
2023

GLADE REFERENCE MANUAL

347

Import a DEF file defFileName into the library libName, which must exist. The cellName is

determined from the DEF DESIGN keyword and the view name from viewName. If ecoMode is true

then the COMPONENTS and PINS sections only are read, and existing components and pins will have

their origin and orientation updated from the DEF file. If compressed is true a gzip compressed

format file is expected and will be uncompressed during DEF in. If reportMissingPins is true, missing

net connections to pins will be reported. If importSpecial is true then the SPECIALNETS section is

imported; if importRegular is true then the NETS section is imported. If reportUnplacedComps is true

then any components with a placement status of UNPLACED will be reported.

bool exportDef (const char* libName, const char* cellName, const char* viewName, const char*

defFileName, bool comps=true, bool pins=true, bool regular=true, bool special=true, bool

regularRouting=true, bool specialRouting=true)

Export a DEF file defFileName from the library libName, cell cellName and view viewName. If comps

is true the COMPONENTS section will be output; if pins is true the PINS section will be output; if

regular is true the NETS section will be output; if special is true the SPECIALNETS section will be

output. If regularRouting is true then routing from the NETS section is output, else just the

connectivity. If specialRouting is true then routing from the SPECIALNETS section is output, else just

the connectivity.

bool importVerilog (const char* libName, const char* verilogFileName, const char* powerNet,

const char* groundNet, const char* flatViewName, bool flatten, const char* topCellName, int

hPinLayer, int vPinLayer, double aspect, double utilisation)

Import a Verilog file verilogFileName into library libName. Cells with names matching the verilog

module names are created with a view type of netlist. powerNet and groundNet specify the supply

and ground nets used to resolve 1'b1 and 1'b0 references respectively. If flatten is true the Verilog

netlist will be flattened into view flatViewName; topCellName is used as the top cell of the design to

flatten. hPinLayer and vPinLayer are the layer numbers that are used for pins created in the

flattened view. aspect is the aspect ratio of the resulting boundary layer created in the flattened

view and utilisation sets the area out the boundary layer such that the total cell area divided by the

boundary area equals the utilisation.

bool exportVerilog (const char* libName, const char* cellName, const char* viewName, const

char* verilogFileName, bool flatMode=true, const char *switchlist = NULL, const char *stoplist =

NULL)

Export a Verilog file verilogFileName from library libName, cell name cellName, and view name

viewName. If flatMode is true, the verilog will be flattened else a hierarchical netlist will be written.

August 30,
2023

GLADE REFERENCE MANUAL

348

bool importECO (const char * ecoFileName)

Import an ECO file from file ecoFileName into the current open cellView . This function does nothing

in non-graphics mode.

bool importOasis (const char* libName, const char* oasisFileName, bool dubiousData=true, bool

allowNonPrintingChars=false, bool reportCells=false, pathconv = 2, bool openTopCell=false,

double scale=1.0, double xoffset=0.0, double yoffset=0.0, int csen=0, int duplicates=0, const char

*viewName="layout")

Import an OASIS file oasisFileName into the library libName. The library is created if it does not

already exist. If dubiousData is true, dubious constructs in the Oasis data are reported. is

allowNonPrintingChars is true, non-printing characters will be allowed to be read; normally Oasis

only permits printable characters in a-string or n-string types. If reportCells is true, cells are reported

in the message window as they are read. If pathconv is set to 2 (the default), paths are imported as

paths. If set to 1, 2 point paths are imported as rectnagles. If set to 0, 2 point paths are imported as

H/VSegs. If openTopCell is true, all potential top cell candidates are opened in the gui. A top cell

candidate is any cell that is not referenced by another cell, and is not empty. scale allows scaling of

all input data by the factor specified. xoffset will add the specified offset to all x coordinate data,

yoffset will add the specified offset to all y coordinate data. csen controls case sensitivity, 0 means

preserve case, 1 converts to uppercase, 2 to lowercase. duplicates controls handling of duplicate cell

definitions. If 0, duplicate cells replace any existing cell definitions. If 1, duplicate cells definitions are

ignored. If 2, duplicate cell data is merged into existing cells. viewName sets the view name of

cellViews created during import. viewName sets the view name of imported cellviews.

bool exportOasis (const char* libName, const char* viewNames, const char* oasisFileName, bool

outputAllCells = true, bool outputChildCells = true, const char* cellNames = NULL, bool strict =

false, bool cblock = false, bool cellOfsets = false, bool reportCells = false, double grid=0.005, bool

writeLayerNames = false, int outputLayer = -1)

Export an OASIS file oasisFileName from library libName. All views specified in the space or comma

delimited list viewNames are output. If outputAllCells is true then all cells in the library are output to

the GDS2 file and cellNames is ignored. If outputAllCells is false then cellNames is a space or comma

delimited list of cells to output. If strict is true, the OASIS file is written in STRICT mode. If cblock is

true, CBLOCK compression is used which can substantially reduce the output file size. If cellOfsetts is

checked in STRICT mode, the property S_CELL_OFFSET is written for each cell in the cellname table

so that random access to cells are possible allowing e.g. multithreaded reading of the OASIS file. If

reportCells is checked, cells are reported in the message window as they are written. grid sets the

anap grid for e.g. circles. writeLayerNames controls whether layer names are written to the oasis

file. outputLayer if not -1 will write the specified layer number.

August 30,
2023

GLADE REFERENCE MANUAL

349

bool ok = ui.importDxf (const char* libName, const char* cellName, const char* dxfFileName, int

dbu=1000)

Import a DXF file dxfFileName into the library libName. The library is created if it does not already

exist. The DXF file is imported into a cell with name cellName and viewName layout.

bool exportDxf (const char* libName, const char* cellName, const char* dxfFileName, bool

outputText=true, bool allLayers=true)

Export a DXF file dxfFileName from the library libName, cell cellName and view name layout. If

outputText is True then text labels are output. If allLayers is True then all layers are output to the

DXF file, else only the currently visible layers are output.

bool importDSPF (const char *libName, const char *dspfFileName, const char *netsToRead=NULL,

bool saveC=true, bool saver=true, bool saveI=false)

Import a DSPF file dspfFileName into the library libName. The cellView created is as defined in the

DSPF SUBCKT name. If netsToRead is a space-delimited list of net names, then only those net names

and associated subnodes, resistors and capacitors will be read. This can dramatically reduce read

time and memory usage for large designs. If saveC is true, parasitic capacitors are stored in the

database. If saveR is true, parasitic resistors are stored. If saveI is true, instances and instancePins

are created. Saving instances requires a second pass read of the DSPF to resolve forward references.

bool importCDL (const char* libName, const char* cdlFileName)

Import a CDL file cdlFileName into the library libName.

bool exportCDL (const char* libName, const char*cellName, const char*viewName, const char*

cdlFileName, const char *globals, bool annotateXY=false, bool microns=false, bool rmodel=false,

const char* rpropname="r", bool cmodel=false, const char* cpropname= "c", double

filterCapLimit=-1.0, bool filterCaps=true, bool mergeCaps=false, const char* nlpPropName="",

const char * busLeft="<", const char * busRight=">")

Export a flat CDL file cdlFileName from the library libName with cell cellName, view viewName.

globals is a space delimited list of global net names e.g. VDD and VSS. If annotateXY is true, XY

coordinates of instances are written in the CDL file as $X= / $Y= values. If rmodel is True then the

resistor model name is reported, else the resistor value (R=...) is reported. rpropname is the property

that is used to report the resistor value and should be a property of the resistor extraction pcell.

cmodel and cpropname act similarly for capacitors (but not for parasitic capacitors which are always

reported by value). If a positive filterCapLimit is specified, any parasitic capacitances below this limit

(in Farads) will not be written in the CDL file if filterCaps is True. If mergeCaps is True then parasitic

August 30,
2023

GLADE REFERENCE MANUAL

350

caps between net pairs are lumped all togther and reported only once per net pair. nlpPropName is

the name of the NLP property controlling instance netlisting, busLeft is the left bus bit character,

busRight is the right bus bit character.

bool schHNLOut (const char* libName, const char* cellName, const char* viewName, const char*

cdlFileName, const char* switchList, const char* stopList, const char* globals, bool addEnd=false,

bool rmodel=false, const char* rpropname="r", bool cmodel=false, const char* cpropname= "c",

double filterCapLimit=-1.0, bool filterCaps= true, bool mergeCaps=false, const const char*

nlpPropName="", const char* busLeft="<", const char* busRight=">")

Export a hierarchical CDL file cdlFileName from the library libName with cell cellName and view

viewName. switchList is a space delimited list of view names the netlister can switch into e.g.

"schematic symbol". stopList is a space delimited list of views the netlist can stop on, which should

have a NLPDeviceFormat string property to describe the netlist format for the cellView . globals is a

space delimited list of global net names. If addEnd is True, a '.end' line is added to the end of the

netlist (for Spice correct syntax of a complete netlist). If rmodel is True then the resistor model name

is reported, else the resistor value (R=...) is reported. rpropname is the property that is used to

report the resistor value and should be a property of the resistor extraction pcell. cmodel and

cpropname act similarly for capacitors (but not for parasitic capacitors which are always reported by

value). If a positive filterCapLimit is specified, any parasitic capacitances below this limit (in Farads)

will not be written in the CDL file, if filterCaps is True. If mergeCaps is True then parasitic

caps between net pairs are lumped all togther and reported only once per net pair. nlpPropName is

the name of the NLP property controlling instance netlisting, busLeft is the left bus bit character,

busRight is the right bus bit character.

bool checkExtracted(cellView *cv)

Checks if a schematic cellView has been extracted since last modified.

int check(const char* libName, const char* cellName, const char* viewName)

Checks a schematic or symbol cellView for errors, and returns the number of errors.

zoomIn ()

Zoom in according to the current zoomin factor. This function does nothing in non-graphics mode.

zoomIn (int x1, int y1, int x2, int y2)

Zoom in to the area given by x1 y1 x2 y2. This function does nothing in non-graphics mode.

August 30,
2023

GLADE REFERENCE MANUAL

351

zoomOut ()

Zoom out according to the current zoomout factor. This function does nothing in non-graphics

mode.

zoomOut (int x1, int y1, int x2, int y2)

Zoom out by the area given by x1 y1 x2 y2. This function does nothing in non-graphics mode.

zoomToNet (const char *name)

Zoom to fit the net shapes for the net given by name.

zoomToNets(list)

Zoom to fit the net shapes for all nets given in the python list.

deleteCellView(const char* libName, const char* cellName, const char* viewName)

Delete the cell specified by libName, cellName and viewName .

renameCellView(const char* libName, const char* cellName, const char* viewName)

Rename the cell specified by libName, cellName and viewName . A dialog will be displayed

prompting for the new cell name. This function does nothing in non-graphics mode.

copyCellView(const char* libName, const char* cellName, const char* viewName)

Copy the cell specified by libName, cellName and viewName . A dialog will be displayed prompting

for the new cell name. This function does nothing in non-graphics mode.

copyCell(const char* libName, const char* cellName)

Copy the cellView specified by libName and cellName. A dialog will be displayed prompting for the

new cellView name. This function does nothing in non-graphics mode.

August 30,
2023

GLADE REFERENCE MANUAL

352

saveCellView(const char* libName, const char* cellName, const char* viewName)

Saves the cellView specified by libName, cellName and viewName. No dialog is displayed.

properties(const char* libName, const char* cellName, const char* viewName)

Display the properties of the cell specified by libName, cellName and viewName . This function does

nothing in non-graphics mode.

biasCells(cellView *cv, int layer, int biasFactor, int xgrid, int ygrid, bool allCells=false)

Bias cell(s). cv is the cellView of the cell to bias, or any cell in the library . layer is the layer to bias,

and biasFactor is the amount to bias the layer in database units. A positive biasFactor will grow the

shapes, a negative biasFactor will shrink the shapes. Xgrid and ygrid are the snap grids to snap

resulting shapes to, in database units. If allCells is true (1), then all cellViews in the library containing

cv will be biassed.

biasCell(cellView *cv, int layer, int biasFactor, int xgrid, int ygrid)

Bias a single cell.

scaleCells(cellView *cv, double scaleFactor, int grid, bool allCells=false)

Scale cell(s). cv is the cellView of the cell to bias, or any cell in the library . scaleFactor is the scale

factor to apply to the cell(s). grid is the snap grid to snap resulting shapes to, in database units. If

allCells is true (1), then all cellViews in the library containing cv will be scaled.

scaleCell(cellView *cv, double scaleFactor, int grid)

Scale a single cellView by scaleFactor. Grid is the snap grid to snap shapes to.

int compareCells(const char *libName1, const char *cellName1, const char *viewName1, const

char *libName2, const char *cellName2, const char *viewName2, int compareLayer=-1, bool

hier=false, bool countShapes=false, int outputLayer=TECH_MARKER_LAYER, int outputCell=0)

Compares two cellViews using an XOR operation using a simple non-tiled approach. This is good for

small-ish cells or less than a few thousand transistors/shapes. The comparison is done for

compareLayer; if this is set to -1 all layers in the cellViews are compared, else just the layer specified.

If hier is false(0, the default), then the comparison is done at the top level only; if true (1) then it is

August 30,
2023

GLADE REFERENCE MANUAL

353

done hierarchically. The function returns 0 if the two cellViews are identical, -1 if an error occurred

e.g. different number of layers in the cells, or different number of shapes (but see countShapes), or

the number of differences found. If countShapes is false (0, the default) then the number of shapes

may differ between the cells, but the XOR result must match.

int compareCells2 (const char *libName1, const char *cellName1, const char *viewName1, const

char *libName2, const char *cellName2, const char *viewName2, int compareLayer=-1, bool

hier=false, bool multiThreaded=1, int maxThreads=QThread::idealThreadCount(), bool

tileAuto=1, int tileWidth=1, int tileHeight=1, int outputLayer=TECH_DRCMARKER_LAYER, int

outputCell=0)

Compares two cellViews using a tiled XOR operation. The comparison is done for compareLayer; if

this is set to -1 all layers in the cellViews are compared. If hier is true (1), then the comparison is

done hierarchically. The function returns 0 if the two cellViews are identical, -1 if an error

occurred, or the number of differences found. If multiThreaded is true (the default), then the layout

is tiled and run with maxThreads threads. If tileAuto is true (the default), an intelligent tiling

algorithm is used, else tile widths and heights must be specified.

bool booleanOp(const char* libName1, const char* cellName1, const char* viewName1, int

opType, int layer1, int layer2, int layer3, bool hier=true, bool outputTraps=false, bool size=false,

double sizeBy=1.0

Run Boolean operations on a cellView specified by libName1, cellName1, viewName1. The opType is

one of OP_AND, OP_OR1, OP_OR2, OP_NOT1, OP_NOT2, OP_XOR, OP_SIZE . Input layer(s) are

layer1 and optionally layer2; output layer is layer3. The operation is hierarchical if hier is true. If

outputTraps is true, the output shapes are converted to trapezoids. If size is true, the output shapes

are sized by sizeBy.

bool booleanOp(const char* libName1, const char* cellName1, const char* viewName1, const

char* libName2, const char* cellName2, const char* viewName2, const char* libName3, const

char* cellName3, const char* viewName3, int opType, int layer1, int layer2, int layer3, bool

hier=true, bool outputTraps=false, bool size=false, double sizeBy=1.0

Run Boolean operations on a cellView specified by libName1, cellName1, viewName1, libName2,

cellName2, viewName2 and output cellView libName3, cellName3, viewName3. The opType is one of

OP_AND, OP_OR1, OP_OR2, OP_NOT1, OP_NOT2, OP_XOR, OP_SIZE . Input layer(s) are layer1 and

optionally layer2; output layer is layer3. The operation is hierarchical if hier is true. If outputTraps is

true, the output shapes are converted to trapezoids. If size is true, the output shapes are sized by

sizeBy.

August 30,
2023

GLADE REFERENCE MANUAL

354

bool runLVS(const char* libName, const char* cellName, const char* viewName, const char*

netlist, const char* globalNets= NULL, const char* workDir= ".", bool isHierNetList= false, const

char* delimiter= "/", const char* topCellName=NULL, bool checkDeviceProps=false, bool

collapseLikeSized= false, bool noCollapseFingered= false,bool noCollapseChains= false, bool

warnChains= false, bool caseFoldNets= false,bool noLocalMatching= false, bool noOptLabelling=

false, bool matchProperties=false, bool matchPorts=false, bool warnZeroNets= false, bool

verbose= false,const char* errorLimit= NULL, const char* netSizeLimit= NULL,const char*

progressLimit= NULL, const char* suspectNodeLimit= NULL, db_Float64 tranTolerance=10.0,

db_Float64 capTolerance= 10.0, const char* equivInFileName= NULL, const char*

equivOutFileName= NULL)

Runs LVS, comparing the cellview given by libName/cellName/viewName, which should be an

extracted cellView , against the Spice/CDL netlist given by netlist. globalNets is a space delimited list

of global net names. workDir is used for the creation of temporary files. If isHierNetList is true, then

the netlist is treated as hierarchical and will be flattened with delimiter character delimiter and top

cell name topCellName. If checkDeviceProps is true, device properties e.g. W, L or MOS devices are

checked according to the tolerance specified by tranTolerance and capTolerance.

The remainder of the parameters correspond to Gemini options.

int traceNet(cellView *cv, Point & start, int mode, bool addNetName=false, char *netName=NULL,

char *libName=NULL, char *cellName=NULL, char *viewName=NULL)

Runs the net tracer using the current cellView cv, starting tracing from the Point start. Mode can be:

1. Trace the net and highlight the resulting traced shapes.

2. Trace the net, and select shapes on the top level only (traced shapes in lower levels of the

hierarchy cannot be selected).

3. Trace the net, hightlight the traced shapes, and save the shapes to the cellView given by

libName / cellName / viewName. Note the shapes are flattened.

If addNetName is set True and a netName is given, all traced shapes will be assigned to a net of that

name.

The numTraced return parameter is the number of traced shapes.

int schCheck (const char* libName, const char* cellName, const char* viewName, bool snapLabels,

float snapDist)

Check a schematic cellView . Returns the number of errors found, or -1 if the cell could not be

checked. If snapLabels is True, labels closer than snapDist to a wire will be snapped onto the wire.

int symCheck (const char* libName, const char* cellName, const char* viewName)

Check a symbol cellView . Returns the number of errors found, or -1 if the cell could not be checked.

August 30,
2023

GLADE REFERENCE MANUAL

355

int viewCheck(const char* libName, const char* cellname, const char* viewName= “symbol”)

Run a cross view check on a cellView. Pins count, pin names etc. are checked for consistency.

bool createCellView (const char* libName, const char* cellName, const char* viewName)

Create a symbol cellView from the given cellView (normally a schematic). Returns true if successful.

line * routeWire(const Point & start, const Point & stop, const char *netName=null, double

wrongWayCost=2.0, double blockageCost=4.0, double heuristic=1.2)

Routes a line on the wire layer from start to stop, avoiding obstacles (symbols and parallel collinear

wires). If the route is successful, returns the line object created, or None if failed. If netName is

specified, then the line is assigned that net name.

9.3.34.1 Extending Glade by creating menus / bindkeys etc.

cvar.uiptr

A global pointer to the ui class instanciation in Glade. Use this rather than creating your own ui

variable using ui(). For example:

gui=cvar.uiptr
gui.OpenCellView("default", "nand", "layout")

Although you can use e.g. ui().<functionName()>, this will not work for commands like createAction()

which only work with the existing instanciated ui object.

QMenu * createMenu(const char *name)

Creates a menu called name in the menu bar.

QMenu * createMenu(QMenu *menu, const char *name)

Creates a submenu called name in menu.

addSeparator(QMenu* menu)

Adds a separator to the menu.

August 30,
2023

GLADE REFERENCE MANUAL

356

QAction * createAction(const char *name, const char *cmd)

Creates an action called name with a command cmd. The command should be a valid Python

command. An action defines a common command that can be invoked by any or all of a menu item,

a bindkey or a toolbar button.

QAction * createAction(const char *name, const char *cmd, QActionGroup group)

Creates an action called name with a command cmd that is part of an actionGroup group. The

command should be a valid Python command. An action defines a common command that can be

invoked by any or all of a menu item, a bindkey or a toolbar button.

QActionGroup * createActionGroup()

Create an actionGroup.

createMenuItem(QMenu * menu, QAction * action)

Adds the action to the menu. The action name will be shown on the menu, along with any key

binding defined for the action.

setBindKey(QAction * action, const char* keysequence)

Sets the bindkey for action. keysequence can be a key e.g. "k" or a combination e.g. "Ctrl+p",

"Shift+p", "Alt+p"

QIcon * createIcon (const char* fileName)

Creates an icon from an image file (.png format)

setIcon (QAction * action, const char* fileName)

Sets the icon for an action from the image file (.png format)

setIcon (QAction * action, QIcon * icon)

Sets the icon for an action

August 30,
2023

GLADE REFERENCE MANUAL

357

QToolbar * createToolBar (const char *name)

Creates a tool bar with name name.

createToolBarItem (QToolBar *toolBar, QAction *action)

Adds an action to a toolbar.

addSeparator (QToolBar *toolBar)

Adds a separator to a toolbar.

An example of a python script for setting up a user-defined menu is as follows:

define some user function
def myFunction() :
print "Hello World!"
gui = cvar.uiptr
menu = gui.createMenu("MyMenu")
action=gui.createAction("MyAction", "myFunction()")
gui.createMenuItem(menu, action)
gui.setBindKey(action, "!")

9.3.35 utils class

Not a class but several utility functions for database related operations.

const char *getOrient(orient_t o)

Gets an orient_t as a string, i.e. “R0”, “R90”, “R180”, “R270”, “MX”, “MXR90”, “MY”, “MYR90”.

const char *getDEFOrient(orient_t o)

Gets a orient_t as a DEF orientation name e.g. “FN”, “FE”, “FS”, “FW”.

orient_t findOrient(orient_t src, orient_t dest)

Given a source and destination orientation, find the prient that transforms the former into the latter.

August 30,
2023

GLADE REFERENCE MANUAL

358

orient_t setOrient(const char *s)

Return an orient from a string, e.g. “R90” -> R90

int orientToDegrees(orient_t o)

Gets an orient_t in degrees e.g. 0, 90, 180, 270.

db_TextAlign setPresentation(const char *s)

Returns a db_TextAlign from a string, e.g. “topCentre”.

const char *getPresentation(db_TextAlign a)

Returns a db_TextAlign as a string, e.g. “centreCentre”.

double areaPolygon(Point *pts, int num);

Gets the signed area of a polygon with pts vertices and num number of vertices.

compressPoints(Point *ptlist, int & size, bool ccw=true)

compressPoints(int* x, int* y, int & size, bool ccw=true)

compressPoints(double* x, double* y, int & size, bool ccw = true)

Removes colinear and duplicate points.

int ptInPoly(Point* ptlist, int num, const Point p)

int ptInPoly(int* x, int* y, int num, const Point p)

int ptInPoly(int*x, int* y, int num, int ax, int ay)

Returns -1 if point is touching polygon, 1 if inside, and 0 if outside the polygon.

int contains(const Point *ptlist, int npoints, const Point &p, bool allowTouching=false)

int contains(int *x, int *y, int npoints, const Point &p, bool allowTouching=false)

August 30,
2023

GLADE REFERENCE MANUAL

359

Fast check if a Point is inside a polygon. Returns > 0 (in fact the winding number) if inside, 0 if outside

the polygon.

bool overlaps(const Point * ptlist1, int numPts1, const Point *ptlist2, int numPts2, bool touching)

Returns true if polygon 1 overlaps polygon 2.

bool clip(int* x, int* y, int & nPoints, int* clipx, int* clipy, int nClipPts)

bool clip(Point* pts, int & nPoints, int* clipx, int* clipy, int nClipPts)

Clip first polygon by the second.

Point * createPolygon(Point* points, int &numPoints, int width, int style, int begExt, int endExt)

Create a polygon from a path represented by points.

double getPropAsFloat(pListItem * item)

Gets a property list item as a float. E.g. ‘1u’ returns 1.0e-6

int getNumShapesInCellView(cellView *cv, bool hier=true)

Get the number of shapes in a cellView. If hier is true, descend into instances recursively.

9.3.36 via class

The Via class represents a via master, which is a kind of special cellView . Instances of vias are called

viaInsts, and are simplified forms on insts. Normally a via is created with a given name; its shapes are

added with addViaLayer(), and then the via is added to the library using library ::addVia().

via(const char* name)

Creates a via object. The second type of constructor creates a via with name name.

setViaName(const char *name)

Sets the via's name.

August 30,
2023

GLADE REFERENCE MANUAL

360

const char* getViaName()

Gets the via's name.

viaLayer * getViaLayerList()

Returns a viaLayer list which is a structure of the form :

struct viaLayer {
 int layer;
 Rect geom;
 viaLayer *next;
} viaLayer;

So for example given a viaLayer vl, its rectangle is give by vl.geom

setViaLayerList(viaLayer * vl)

Sets the via's viaLayer list. Normally the viaLayer list is created using addViaLayer().

int getNumLayers()

Gets the number of layers in the via. Typically this is 3 (two conductor layers and one via layer).

int getFirstLayer()

Gets the first (lower) layer of the via.

int getLastLayer()

Gets the last (upper) layer of the via.

int getCutLayer()

Gets the cut (middle) layer of the via.

setViaDefault(bool flag)

August 30,
2023

GLADE REFERENCE MANUAL

361

Sets the via as a default via if flag is True.

bool getViaDefault()

Returns True if the via is a default via.

setSpecial(bool val)

Sets the via special flag.

bool getSpecial()

Gets the via special flag.

setNonDefaultName(const char* name)

Sets the nondefault rule name for this via.

const char * getNonDefaultName()

Gets the nondefault rule name for this via.

setRuleName(const char*name)

Sets the via rule name.

const char* getRuleName()

Gets the via rule name.

addViaLayer(int layer, Rect geom)

Adds a via layer. Note that vias can currently only contain rectangular shapes.

int getOtherViaLayer(int layer)

August 30,
2023

GLADE REFERENCE MANUAL

362

Given one of the via's conducting layers, returns the 'other' conducting layer.

lib(library * lib)

Sets the library for this via. Normally this should not be used, as a via, after creation, should be

added to a library using lib.addVia(v).

library * lib()

Gets the library that contains this via.

bBox(Rect & box)

Updates the via's bounding box. Note this creates a new bounding box which is the union of the

existing bounding box and the new box.

Rect & bBox()

Gets the via's bounding box.

setResistance(double r)

Sets the via's resistance in ohms.

double getResistance()

Gets the via's resistance in ohms.

setPattern(const char *name)

Sets the via's pattern name

const char* getPattern()

Gets the via's pattern name

August 30,
2023

GLADE REFERENCE MANUAL

363

9.3.37 viaInst class

A viaInst is a reference to a via, in a cellview. viaInsts are like instances but require less memory and

have a specific function, i.e. to be instances of vias which again are a type of cellView with a specific

function, i.e to hold rectangular shapes of the via. Normally viaInsts are created in a cellView using

the dbCreateViaInst() function.

int left()

Get the left edge of the viaInst's bounding box

int bottom()

Get the bottom edge of the viaInst's bounding box

int right()

Get the right edge of the viaInst's bounding box

int top()

Get the top edge of the viaInst's bounding box

bool offGrid(int grid)

Checks if a viaInst's origin is on the grid grid, which is in database units.

setStyle(db_PathStyle s)

Sets the viaInst style, i.e. the type of the path end. The style can be one of DB_TRUNCATED,

DB_ROUND, DB_EXTENDED, DB_VAREXTEND, DB_OCTAGONAL.

db_PathStyle getStyle()

Gets the viaInst style.

August 30,
2023

GLADE REFERENCE MANUAL

364

setType(db_PathType t)

Sets the viaInst pathtype. The type can be one of DB_ROUTEDWIRE, DB_FIXEDWIRE,

DB_COVERWIRE, DB_NOSHIELD.

db_PathType getType()

Gets the viaInst type.

const char* getTypeStr()

Gets the viaInst type as a string.

setShape(db_PathShape s)

Sets the viaInst pathshape. The shape can be one of DB_RING, DB_PADRING, DB_BLOCKRING,

DB_STRIPE, DB_FOLLOWPIN, DB_IOWIRE, DB_COREWIRE, DB_BLOCKWIRE, DB_BLOCKAGEWIRE,

DB_FILLWIRE, DB_DRCFILL.

db_PathShape getShape()

Gets the viaInst shape.

const char* getShapeStr()

Gets the viaInst shape as a string.

orient(orient_t orient)

Set the viaInst's orientation. orient can be one of: R0, R90, R180, R270, MX, MXR90, MY, MYR90.

db_Orient orient ()

Get the viaInst's orientation.

const char* getOrientStr()

August 30,
2023

GLADE REFERENCE MANUAL

365

Returns the via orientation as a string e.g. “R0”.

setSpecial(bool val)

Sets the via as belonging to a specialNet.

bool isSpecial()

Returns true is the via is a specialNet via.

setNet(net *n)

Set the net for this viaInst.

net * getNet()

Return the net associated with this viaInst.

const char* getNetName()

Get the viaInst’s net name as a string.

Rect bBox()

Get the viaInst's bounding box.

dbtype_t objType()

Returns the objects type as VIAINST

const char* objName()

Returns the print name i.e. "VIAINST"

int getLowerLayer()

August 30,
2023

GLADE REFERENCE MANUAL

366

Returns the viaInst’s lower layer number.

int getCutLayer()

Returns the viaInst’s cut layer.

int getUpperLayer()

Returns the viaInst’s upper layer.

int nPoints()

Return the number of points in this viaInst (4).

Point * ptlist()

Return the pointlist for this viaInst.

int layer()

Return the viaInst layer (TECH_VIAINST_LAYER).

transform(transform & trans)

Transform the instance by the given transform.

bool offGrid()

Returns true if the viaInst contains offgrid points.

bool manhattan()

Returns true.

scale(double scalefactor, double grid)

August 30,
2023

GLADE REFERENCE MANUAL

367

Scale the instance origin coordinates by scalefactor, snapping to grid.

int getViaIndex()

Returns the viaInst’s via index.

setViaIndex(int index)

Set the viaInst’s via index.

int getNearestEdge(const Point &p, segment &seg, bool centreLine=true, bool edge=true)

Get the nearest viaInst edge to the Point p as a segment, and return the distance from p to this

segment.

int getNearestVertex(const Point &p, vertex &vert, bool centreLine=true, bool edge=true)

Get the nearest viaInst vertex to the Point p as a vertex, and return the distance from p to this

vertex.

library * lib()

Get the library that the viaInst’s via is defined in.

via * getVia(int index)

Get the via master for this viaInst index

via * getVia()

Gets the via master for this viaInst

origin(Point origin)

Sets the viaInst's origin to the Point origin .

August 30,
2023

GLADE REFERENCE MANUAL

368

int origin()

Get the viaInst's origin.

bool isDefault()

Returns true if the viaInst’s via is a default via.

bool ptInPoly(const Point &p)

Returns true if Point p is contained in the viaInst’s bounding box.

Move(cellView *dest, Point delta, bool opt= 1)

Move the viaInst's origin by delta. If opt is 1 then the database is re-optimised for the new inst

position. If there are a lot of objects to move it makes sense to turn this off and instead use the

cellView update() function after moving them all.

dbObj * Copy(cellView *dest, Point delta)

Copy the viaInst's . dest is the destination cellview, delta is the offset from the current origin.

dbObjList<dbObj> * Flatten(cellView *dest, transform &trans)

Flatten the viaInst's into the cellView dest, with the given transform trans.

9.3.38 Vector class

A Vector class represents a direction. Internally it holds two 64 bit float values.

Vector

Creates a Vector object v. The Vector is initialised to (0 0) by default.

August 30,
2023

GLADE REFERENCE MANUAL

369

Vector(int x1, int y1, int x2, int y2)

Creates a Vector v, initialised with the values (x2-x1) and (y2-y1).

Vector(double x, double y)

Creates a Vector v, initialised with the values x and y.

setX(int x)

Set the Vector X value.

setY(int y)

Set the Vector Y value.

double x = v.x

Get the X component of the Vector v.

double y = v.y

Get the Y component of the Vector v.

Vector v = operator +

Vector v = operator +=

Adds the two Vectors.

Vector v = operator –

Vector v = operator -=

Subtracts the two Vectors.

Vector v = operator *

August 30,
2023

GLADE REFERENCE MANUAL

370

Vector v = operator *=

Returns a Vector multiplied by a scalar.

Vector v = operator /

Vector v = operator /=

Returns a Vector divided by a scalar.

double dotProduct(const Vector &other)

Returns the dot product of this Vector with other.

double crossProduct(const Vector &other)

Returns the cross product of this Vector with other.

Vector normal()

Returns the normal of this Vector.

double length()

Returns the length of this Vector, i.e. sqrt(x^2 + y^2)

double distance(Vector other)

Returns the euclidian distance between this Vector and other.

9.3.39 vertex class

A vertex is a point on a shape. It is derived from a dbObj so it can be selectable and have properties;

it also refers to a dbObj . Vertices are used when selecting a vertex of e.g. a rectangle or polygon.

vertex(const Point &p)

August 30,
2023

GLADE REFERENCE MANUAL

371

Creates a vertex with coordinate p.

vertex(int x, int y)

Creates a vertex with the specified xy coordinates.

dbtype_t objType()

Returns the objects type - VERTEX.

const cha * objName()

Returns the print name i.e. "VERTEX"

bool operator ==

Returns true if one vertex is equal to another.

bool operator !=

Returns true if one vertex is different from the other.

SetObj(dbObj * obj)

Sets the dbObj associated with this vertex.

dbObj * GetObj()

Gets the dbObj associated with this vertex.

Point getPoint()

Gets the Point that dfines the vertex.

Rect bBox()

August 30,
2023

GLADE REFERENCE MANUAL

372

Returns a fake bounding box 10 dbu larger than the vertex itself.

Move(cellView *dest, Point delta, bool opt = True)

Moves this vertex by delta. If opt is True then the database is re-optimised for the new vertex

position. If there are a lot of objects to move it makes sense to turn this off and instead use the

cellView update() function after moving them all.

dbObj * Copy(cellView *dest, Point delta)

Copies the vertex. dest is the cellView containing the vertex, delta is the XY coordinate to move the

vertex by during the copy.

transform(transform & trans)

Transforms the vertex by the transform trans.

int x()

The x coordinate of the vertex.

int y()

The y coordinate of the vertex.

setX(int x)

Set the X coordinate of the vertex.

setY(int y)

Set the Y coordinate of the vertex.

August 30,
2023

GLADE REFERENCE MANUAL

373

9.3.40 view class

The view class represents a view, which is a representation of a cell. The combination of a cell and a

view is a cellView . Views are normally automatically created by e.g. library::dbOpenCellView(). A

view is derived from a dbObj, so may have properties.

view

Creates an view object.

dbObjList<cellView> * cellViews()

Get a dbObjList of the cellViews for this view.

[] getCellViews()

Gets a Python list of the cellViews for this view.

name(const char* s)

Sets the view's name.

const char* name()

Gets the view's name.

setViewType(db_viewType type)

Sets the view's type. The viewType can currently be one of layout, schematic, symbol, abstract.

db_viewType viewType()

Returns the view's type.

const char* getViewTypeAsString()

August 30,
2023

GLADE REFERENCE MANUAL

374

Gets the view type as a string.

addCellView(cellView * cv)

Adds cv to the view's cellView list.

cellView * dbFindCellViewByView(const char *cellName)

Finds the cellView for this view with cellName cellName. If it does not exist, a null pointer is

returned.

dbtype_t objType()

Returns the object's type (VIEW).

const char* objName()

Returns the object's print name ("VIEW").

9.3.41 VSeg class

A VSeg represents a wiring segment for place&route data, which uses less memory than an

equivalent 2 point path. It is a 2 vertex vertical path. A VSeg is normally created by cellView function

dbCreateVSeg()

setPoints(int x1, int y1, int x2, int y2)

Sets the vertices of the VSeg

int left()

Gets the leftmost X coordinate of a VSeg.

int right()

Gets the rightmost X coordinate of a VSeg.

August 30,
2023

GLADE REFERENCE MANUAL

375

int bottom()

Gets the lowest Y coordinate of a VSeg.

int top()

Gets the highest Y coordinate of a VSeg.

int coord(int i)

Gets the i’th coordinate of a VSeg.

bool offGrid(int grid)

Returns true if the VSeg is offgrid.

bool manhattan()

Returns true.

setStyle(db_PathStyle s)

Sets the VSeg style, i.e. the type of the path end. The style can be one of DB_TRUNCATED,

DB_ROUND, DB_EXTENDED, DB_VAREXTEND, DB_OCTAGONAL.

db_PathStyle getStyle()

Gets the VSeg style.

setType(db_PathType t)

Sets the VSeg pathtype. The type can be one of DB_ROUTEDWIRE, DB_FIXEDWIRE, DB_COVERWIRE,

DB_NOSHIELD.

db_PathType getType()

August 30,
2023

GLADE REFERENCE MANUAL

376

Gets the VSeg type.

const char* getTypeStr()

Gets the VSeg type as a string.

setShape(db_PathShape s)

Sets the VSeg pathshape. The shape can be one of DB_RING, DB_PADRING, DB_BLOCKRING,

DB_STRIPE, DB_FOLLOWPIN, DB_IOWIRE, DB_COREWIRE, DB_BLOCKWIRE, DB_BLOCKAGEWIRE,

DB_FILLWIRE, DB_DRCFILL.

db_PathShape getShape()

Gets the VSeg shape.

const char* getShapeStr()

Gets the VSeg shape as a string.

orient(orient_t o)

Sets the VSeg orientation. This has no effect on a VSeg.

orient_t orient()

Returns the VSeg orient as R0.

const char* getOrientStr()

Returns the VSeg orient as “R0”

setSpecial(bool val)

Sets the VSeg’s specialNet status

August 30,
2023

GLADE REFERENCE MANUAL

377

isSpecial()

Returns true is the VSeg is a specialNet.

setHasNet(net *n)

Sets the VSeg hasNet flag. If set, the VSeg has net info.

hasNet()

Returns the VSeg’s hasNet flag. If set, the VSeg has net info.

setNet(net *n)

Sets the VSeg net.

net *n = getNet()

Returns the VSeg’s net .

setIndex(int i)

Sets the VSeg index. The index is used to look up the segParams of this VSeg in the library.

int index()

Gets the VSeg index.

Rect bBox()

Get the bounding box of this VSeg.

dbtype_t objType()

Returns the object type of this VSeg as VSEG.

August 30,
2023

GLADE REFERENCE MANUAL

378

const char* objName()

Returns the object name of this VSeg as "VSEG".

int layer()

Gets the layer number of this VSeg.

int width()

Gets the VSeg width.

double area()

Get the area of this VSeg.

int perimeter()

Get the perimeter of this VSeg.

Point getFirstVertex()

Gets the first vertex of this VSeg.

Point getLastVertex()

Gets the last vertex of this VSeg.

int extent()

Returns the extent, i.e. the length of the VSeg.

setExtent(int e)

Sets the extent of the VSeg.

August 30,
2023

GLADE REFERENCE MANUAL

379

Point origin()

Returns the origin point of a VSeg

setOrigin(int x, int y)

Sets the origin of a VSeg.

bool ptInPoly(const Point &p)

Returns true if the Point p is contained in the VSeg or on its edges.

Move(cellView *dest, Point delta, bool opt = True)

Move this VSeg by distance delta. If opt is True then the database is re-optimised for the new VSeg

position. If there are a lot of objects to move it makes sense to turn this off and instead use the

cellView update() function after moving them all.

dbObj * Copy(cellView *dest, Point delta, int layer = -1)

Copy this VSeg to cellView dest, with offset delta. If layer is a positive integer the VSeg will be copied

to the new layer number.

dbObjList<dbObj> *Flatten(cellView *dest, transform & trans)

Flatten this VSeg into cellView dest with transformation trans.

int getNearestEdge(const Point & p, segment &edge, bool centreLine=true, bool outLine=true)

Gets the nearest segment edge to the VSeg from the Point p and returns the distance. If centreline is

True, the centre line of the VSeg is considered. If outLine is True, the outline edges of the VSeg are

considered.

int getNearestVertex(const Point & p, vertex &vert)

Gets the nearest vertex vert to the VSeg from the Point p and returns the distance.

August 30,
2023

GLADE REFERENCE MANUAL

380

void transform(transform &trans)

Transform a VSeg.

const char* getNetName()

Returns the VSeg’s net name as a string.

int length()

Returns the VSeg length.

int nPoints()

Returns the number of points of the VSeg (2).

Point * ptlist()

Returns the point list of this VSeg as a C array of Points.

